记忆化搜索$||dp||$剪枝

先讲方法,代码待会上

方法一:记忆化搜索

这个方法不怎么解释,就是每搜索完一个高度的最长路径记录一下,以后搜索其他的点时如果走到了这条路就直接用记录的值计算就是了

方法二:$dp$

假设一个点的高度为H,周围四个点的高度分别为$\mathcal{H1,H2,H3,H4,}$$f[i][j]$代表从$(i,j)$滑的最长长度。如果$\mathcal{H}$大于周围四个点的一个,那么就可以滑到那一个点,也就是$f$[高的那个点]$=f$[矮的那个点]$\mathcal{+1}$,到这里就不难写出状态转移方程了:$f[i][j]=f[i+b_g][j+c_g]+\mathcal{1}$(前提:$a[i+b_g][j+c_g]<a[i][j]$),其中$a$数组为读入的高度,$b$、$c$数组为方向数组,$f$数组为这个点的最长路径长度。注意在计算长度之前要先将高度排序,然后再来算

方法3:剪枝

假如说当前的最大高度为$maxn$,搜索函数里的参数$num$(代表当前已经走过的长度),当前这个点的高度为$height$。如果$num+height<=maxn$,那么可以直接$return$(注意:这里我还没有枚举周围四个点)。假设你从这个点可以一路无阻碍的走到$\mathcal{1}$(也就是最优的情况),那么从这个点走的长度为$height$。但是如果已经走的长度加上从这个点的最优长度都小于等于最大长度的话,那么搜下去肯定是毫无意义的,果断剪枝。

除了这个以外,还可以加一个小小的剪枝(与其说是剪枝,不如说是特判):如果$maxn==n*m$,那么就可以直接输出答案了。因为整个地图的大小为$n*m$,若$maxn==n*m$的话就说明可以跑完整个地图,那么最大值无论如何也不会更新了,所以说这里就可以直接输出了(说不定可以过某些测试点呢)

接着附上代码:(由于本人比较懒,$dp$的代码搬$(chao)$运$(xi)$的一本通)

方法一:$(\mathcal{42}ms/\mathcal{928}KB)$(不知道为什么我的记忆化是$\mathcal{42}ms$,大佬都是$\mathcal{0}ms$,可能我太蒟了吧)

#include<cstdio>
#include<iostream>
using namespace std;
const int N=105;
int n,m,a[N][N],f[N][N]= {0},maxn,ans,b[4]= {1,0,-1,0},c[4]= {0,1,0,-1};
bool p[N][N];
inline void dfs(int x,int y,int num) {
int flag=0;
for(int i=0; i<4; i++) {
int xx=x+c[i],yy=y+b[i];
if(a[xx][yy]>=a[x][y]) continue;
if(f[xx][yy]) {
ans=max(ans,f[xx][yy]+num);
continue;
}
if(xx&&xx<=n&&yy&&yy<=m&&!p[xx][yy]) {
p[xx][yy]=1;
dfs(xx,yy,num+1);
p[xx][yy]=0;
}
}
if(!flag) {
ans=max(ans,num);
return;
}
}
int main() {
scanf("%d %d",&n,&m);
for(int i=1; i<=n; i++) {
for(int j=1; j<=m; j++) scanf("%d",&a[i][j]);
}
for(int i=1; i<=n; i++) {
for(int j=1; j<=m; j++) {
ans=0;
p[i][j]=1;
dfs(i,j,1);
p[i][j]=0;
f[i][j]=ans;
if(maxn<ans) maxn=ans;
}
}
printf("%d\n",maxn);
return 0;
}

方法二:$(\mathcal{33}ms/\mathcal{792}KB)$

#include<iostream>
#include<cstdio>
using namespace std;
int dx[5]= {0,-1,0,1,0},dy[5]= {0,0,1,0,-1};
long long r,c,i,j,p,t,ans;
long long m[101][101],f[101][101];
int search(int,int);
int main() {
cin>>r>>c;
ans=0;
for(i=1; i<=r; i++) {
for(j=1; j<=c; j++) cin>>m[i][j];
}
for(i=1; i<=r; i++) {
for(j=1; j<=c; j++) {
t=search(i,j);
f[i][j]=t;
if(t>ans) ans=t;
}
}
cout<<ans<<endl;
}
int search(int x,int y) {
int i,t,tmp,nx,ny;
if(f[x][y]>0) return f[x][y];
t=1;
for(i=1; i<=4; i++) {
nx=x+dx[i];
ny=y+dy[i];
if((nx>=1)&&(nx<=r)&&(ny>=1)&&(ny<=c)&&(m[x][y]<m[nx][ny])) {
tmp=search(nx,ny)+1;
if(tmp>t) t=tmp;
}
}
f[x][y]=t;
return t;
}

方法三:$(\mathcal{988}ms/\mathcal{1040}KB)$

#include<cstdio>
using namespace std;
const int N=105;
int n,m,a[N][N],maxn,b[4]= {1,0,-1,0},c[4]= {0,1,0,-1};
bool p[N][N]= {0};
inline void dfs(int x,int y,int num) {
int flag=0;
if(a[x][y]+num<maxn) return;
for(int i=0; i<4; i++) {
int xx=x+c[i],yy=y+b[i];
if(xx>0&&xx<=n&&yy>0&&yy<=m) {
if(a[xx][yy]>=a[x][y]) continue;//跳不过去
if(!p[xx][yy]) {
flag=1;
p[xx][yy]=1;
dfs(xx,yy,num+1);
p[xx][yy]=0;
}
}
}
if(!flag) {
if(maxn<num) maxn=num;
return;
}
}
int main() {
scanf("%d %d",&n,&m);
for(int i=1; i<=n; i++) {
for(int j=1; j<=m; j++) scanf("%d",&a[i][j]);
}
for(int i=1; i<=n; i++) {
for(int j=1; j<=m; j++) {
if(maxn==n*m) {
printf("%d\n",maxn);
return 0;
}
p[i][j]=1;
dfs(i,j,1);
p[i][j]=0;
}
}
printf("%d",maxn);
return 0;
}

题解 [SHOI2002]滑雪的更多相关文章

  1. [BFS]P1434 [SHOI2002]滑雪

    P1434 [SHOI2002]滑雪 Description Michael喜欢滑雪百这并不奇怪, 因为滑雪的确很刺激.可是为了获得速度,滑的区域必须向下倾斜,而且当你滑到坡底,你不得不再次走上坡或者 ...

  2. 洛谷[SHOI2002]滑雪题解

    什么破题啊 简直就是浪费我时间! 我每天还被我xf定目标了不知道嘛! 题目 朴素的搜索只能得90分 #include <cstdio> #include <iostream> ...

  3. 【dp】P1434 [SHOI2002]滑雪

    题目描述 Michael喜欢滑雪.这并不奇怪,因为滑雪的确很刺激.可是为了获得速度,滑的区域必须向下倾斜,而且当你滑到坡底,你不得不再次走上坡或者等待升降机来载你.Michael想知道在一个区域中最长 ...

  4. 【题解】滑雪 luogu1434 记忆化搜索

    记忆化搜索入门题 题目 Michael喜欢滑雪.这并不奇怪,因为滑雪的确很刺激.可是为了获得速度,滑的区域必须向下倾斜,而且当你滑到坡底,你不得不再次走上坡或者等待升降机来载你.Michael想知道在 ...

  5. P1434 [SHOI2002]滑雪

    题目描述 Michael喜欢滑雪.这并不奇怪,因为滑雪的确很刺激.可是为了获得速度,滑的区域必须向下倾斜,而且当你滑到坡底,你不得不再次走上坡或者等待升降机来载你.Michael想知道在一个区域中最长 ...

  6. P1434 [SHOI2002]滑雪 dfs

    题目描述 Michael喜欢滑雪.这并不奇怪,因为滑雪的确很刺激.可是为了获得速度,滑的区域必须向下倾斜,而且当你滑到坡底,你不得不再次走上坡或者等待升降机来载你.Michael想知道在一个区域中最长 ...

  7. 洛谷 P1434 [SHOI2002]滑雪

    这道题适合记忆化练手 毕竟总有些大佬虐题. 这个题有几个剪枝 1.记忆化 这个不用多说了吧 剪枝就是 如果 当前点到下面一个点的目前下降的高度+1 小于 下面那个点 能下降的高度 那么反过来,这个点不 ...

  8. 洛谷P1434 [SHOI2002]滑雪

    题目描述 Michael喜欢滑雪.这并不奇怪,因为滑雪的确很刺激.可是为了获得速度,滑的区域必须向下倾斜,而且当你滑到坡底,你不得不再次走上坡或者等待升降机来载你.Michael想知道在一个区域中最长 ...

  9. 洛谷-P1434 [SHOI2002]滑雪 (记忆化搜索)

    题意:有一个\(R*C\)的矩阵,可以从矩阵中的任意一个数开始,每次都可以向上下左右选一个比当前位置小的数走,求走到\(1\)的最长路径长度. 题解:这题很明显看到就知道是dfs,但是直接爆搜会TLE ...

随机推荐

  1. shell专题(七):流程控制(重点)

    7.1 if 判断 1.基本语法 if [ 条件判断式 ];then 程序 fi 或者 if [ 条件判断式 ] then 程序 fi 注意事项: (1)[ 条件判断式 ],中括号和条件判断式之间必须 ...

  2. 数据可视化之DAX篇(十五)Power BI按表筛选的思路

    https://zhuanlan.zhihu.com/p/121773967 ​数据分析就是筛选.分组.聚合的过程,关于筛选,可以按一个维度来筛选,也可以按多个维度筛选,还有种常见的方式是,利用几个特 ...

  3. Python之爬虫(十七) Scrapy框架中Spiders用法

    Spider类定义了如何爬去某个网站,包括爬取的动作以及如何从网页内容中提取结构化的数据,总的来说spider就是定义爬取的动作以及分析某个网页 工作流程分析 以初始的URL初始化Request,并设 ...

  4. Python面向对象03 /继承

    Python面向对象03 /继承 目录 Python面向对象03 /继承 1. 初识继承 2. 单继承 3. 多继承 4. 总结 1. 初识继承 概念:专业角度:如果B类继承A类,B类就称为子类,派生 ...

  5. 使用pycharm、跳板机连接内网服务器

    使用pycharm.跳板机连接内网服务器 接手实验室服务器后,大部分同学在GPU集群上跑程序都是直接在ssh界面上跑,这里想着通过pycharm通过跳板机来连接服务器. 总体就是实验室服务器仅限内网访 ...

  6. 你真的清楚DateTime in C#吗?

    DateTime,就是一个世界的大融合.   日期和时间,在我们开发中非常重要.DateTime在C#中,专门用来表达和处理日期和时间. 本文算是多年使用DateTime的一个总结,包括DateTim ...

  7. Python Ethical Hacking - BeEF Framework(1)

    Browser Exploitation Framework. Allows us to launch a number of attacks on a hooked target. Targets ...

  8. OneinStack - 自动编译环境安装脚本

    https://oneinstack.com/

  9. IDEA添加注释常用的快捷键

    1.行注释Ctrl+/ 2.块注释Ctrl+Shift+/ 3.生成类注释 输入/**,然后按回车 (idea上没有生成类注释快捷键的,可以看这里 :idea生成类注释和方法注释的正确方法 ) 4.生 ...

  10. 从LocalDateTime序列化探讨全局一致性序列化

    日拱一卒无有尽,功不唐捐终入海. 楔子 前两周发了三篇SpringSecurity和一篇征文,这周打算写点简单有用易上手的文章,换换脑子,休息一下. 今天要写的是这篇:从LocalDateTime序列 ...