一、发送数据

follower的同步流程

PS:Producer在写入数据的时候永远的找leader,不会直接将数据写入follower

PS:消息写入leader后,follower是主动的去leader进行同步的!

PS:producer采用push模式将数据发布到broker,每条消息追加到分区中,顺序写入磁盘,所以保证同一分区内的数据是有序的

PS:不存在的topic写数据,kafka会自动创建topic,分区和副本的数量根据默认配置都是1。

分区

主要目的:

方便扩展:因为一个topic可以有多个partition,所以我们可以通过扩展机器去轻松的应对日益增长的数据量。
提高并发:以partition为读写单位,可以多个消费者同时消费数据,提高了消息的处理效率。

分发策略:

  1、 partition在写入的时候可以指定需要写入的partition,如果有指定,则写入对应的partition。
  2、 如果没有指定partition,但是设置了数据的key,则会根据key的值hash出一个partition。
  3、 如果既没指定partition,又没有设置key,则会轮询选出一个partition。

ACK应答机制

在生产者向队列写入数据的时候可以设置参数来确定是否确认kafka接收到数据,这个参数可设置的值为0、1、all。(保证消息不丢失)

  0:代表producer往集群发送数据不需要等到集群的返回,不确保消息发送成功。安全性最低但是效率最高。
  1:代表producer往集群发送数据只要leader应答就可以发送下一条,只确保leader发送成功。
  all:代表producer往集群发送数据需要所有的follower都完成从leader的同步才会发送下一条,确保leader发送成功和所有的副本都完成备份。安全性最高,但是效率最低。

二、保存数据

  Kafka初始会单独开辟一块磁盘空间,顺序写入数据(效率比随机写入高),将数据保存在磁盘。

  PS:任何发布到 Partition 的消息都会被追加到 Partition 数据文件的尾部,且消息消费后不会删除(删除策略是针对过期的 Segment 文件),这样的顺序写磁盘操作让 Kafka 的效率非常高(经验证,顺序写磁盘效率比随机写内存还要高,这是 Kafka 高吞吐率的一个很重要的保证)。

Partition 结构

  Partition在服务器上的表现形式就是一个一个的文件夹,每个partition的文件夹下面会有多组segment文件,每组segment文件又包含.index文件、.log文件、.timeindex文件(早期版本中没有)三个文件, log文件就实际是存储message的地方,而index和timeindex文件为索引文件,用于检索消息。

  PS:Segment 是 Kafka 文件存储的最小单位。

  如上图,这个partition有三组segment文件,每个log文件的大小是一样的,但是存储的message数量是不一定相等的(每条的message大小不一致)。文件的命名是以该segment最小offset来命名的,如000.index存储offset为0~368795的消息,kafka就是利用分段+索引的方式来解决查找效率的问题

Message结构

  上面说到log文件就实际是存储message的地方,我们在producer往kafka写入的也是一条一条的message,message主要包含消息体、消息大小、offset、压缩类型……等等

offset:offset是一个占8byte的有序id号,它可以唯一确定每条消息在parition内的位置!
消息大小:消息大小占用4byte,用于描述消息的大小。
消息体:消息体存放的是实际的消息数据(被压缩过),占用的空间根据具体的消息而不一样。

存储策略

  无论消息是否被消费,kafka都会保存所有的消息(存在磁盘)。那对于旧数据有什么删除策略呢?
    基于时间,默认配置是168小时(7天)。
    基于大小,默认配置是1073741824。
  需要注意的是,kafka读取特定消息的时间复杂度是O(1),所以这里删除过期的文件并不会提高kafka的性能

三、消费数据

Kafka采用的是点对点的模式,消费者主动的去kafka集群拉取消息,与producer相同的是,消费者在拉取消息的时候也是找leader去拉取

  • 多个消费者可以组成一个消费者组(consumer group),每个消费者组都有一个组id。
  • 同一个消费组的消费者可以消费同一topic不同分区的数据,但是不会组内多个消费者消费同一分区的数据!!!
  • 消费者数少于分区:会出现某个消费者消费多个partition数据的情况(此时消费的速度不及只处理一个partition的消费者的处理速度)
  • 消费者数多于分区:多出来的消费者不消费任何partition的数据。
  • 建议消费者组的consumer的数量与partition的数量一致!

四、搜索数据

搜索数据样例解析

假如现在需要查找一个offset为368801的message是什么样的过程呢?用一个例子来解释一下搜索过程

  • 先找到offset的368801message所在的segment文件(利用二分法查找),这里找到的就是在第二个segment文件。
  • 打开找到的segment中的.index文件(也就是368796.index文件,该文件起始偏移量为368796+1,我们要查找的offset为368801的message在该index内的偏移量为368796+5=368801,所以这里要查找的相对offset为5)。利用二分法查找相对offset小于或者等于指定的相对offset的索引条目中最大的那个相对offset,所以找到的是相对offset为4的这个索引。
  • 根据找到的相对offset为4的索引确定message存储的物理偏移位置为256。打开数据文件,从位置为256的那个地方开始顺序扫描直到找到offset为368801的那条Message。

  PS:注意该 index 文件并不是从0开始,也不是每次递增1的,这是因为 Kafka 采取稀疏索引存储的方式,每隔一定字节的数据建立一条索引,它减少了索引文件大小,使得能够把 index 映射到内存,降低了查询时的磁盘 IO 开销,同时也并没有给查询带来太多的时间消耗。

  小结:这套机制是建立在offset为有序的基础上,利用segment+有序offset+稀疏索引+二分查找+顺序查找等多种手段来高效的查找数据!至此,消费者就能拿到需要处理的数据进行处理了。

消费者记录位置的方式

早期的版本:消费者将消费到的offset维护zookeeper中,consumer每间隔一段时间上报一次,这里容易导致重复消费,且高并发时和ZK频繁交互,性能不好!

新的版本:消费者消费到的offset已经直接维护在kafk集群的__consumer_offsets这个topic中!

参考资料:

kafka学习(二)kafka工作流程分析的更多相关文章

  1. u-boot分析(二)----工作流程分析

    u-boot分析(二) 由于这两天家里有点事,所以耽误了点时间,没有按时更新,今天我首先要跟大家说说我对于u-boot分析的整体的思路,然后呢我以后的博客会按照这个内容更新,希望大家关注. 言归正传, ...

  2. 深入了解Kafka【二】工作流程及文件存储机制

    1.Kafka工作流程 Kafka中的消息以Topic进行分类,生产者与消费者都是面向Topic处理数据. Topic是逻辑上的概念,而Partition是物理上的概念,每个Partition分为多个 ...

  3. Kafka工作流程分析

    Kafka工作流程分析 生产过程分析 写入方式 producer采用推(push)模式将消息发布到broker,每条消息都被追加(append)到分区(patition)中,属于顺序写磁盘(顺序写磁盘 ...

  4. Kafka之工作流程分析

    Kafka之工作流程分析 kafka核心组成 一.Kafka生产过程分析 1.1 写入方式 producer采用推(push)模式将消息发布到broker,每条消息都被追加(append)到分区(pa ...

  5. 第2章 rsync算法原理和工作流程分析

    本文通过示例详细分析rsync算法原理和rsync的工作流程,是对rsync官方技术报告和官方推荐文章的解释. 以下是本文的姊妹篇: 1.rsync(一):基本命令和用法 2.rsync(二):ino ...

  6. rsync算法原理和工作流程分析

    本文通过示例详细分析rsync算法原理和rsync的工作流程,是对rsync官方技术报告和官方推荐文章的解释.本文不会介绍如何使用rsync命令(见rsync基本用法),而是详细解释它如何实现高效的增 ...

  7. Struts2的工作流程分析

    Struts2的工作流程分析 Posted on 2011-02-22 09:32 概述 本章讲述Struts2的工作原理. 读者如果曾经学习过Struts1.x或者有过Struts1.x的开发经验, ...

  8. rsync(三)算法原理和工作流程分析

    在开始分析算法原理之前,简单说明下rsync的增量传输功能. 假设待传输文件为A,如果目标路径下没有文件A,则rsync会直接传输文件A,如果目标路径下已存在文件A,则发送端视情况决定是否要传输文件A ...

  9. 【转】Hostapd工作流程分析

    [转]Hostapd工作流程分析 转自:http://blog.chinaunix.net/uid-30081165-id-5290531.html Hostapd是一个运行在用户态的守护进程,可以通 ...

  10. [国嵌笔记][030][U-Boot工作流程分析]

    uboot工作流程分析 程序入口 1.打开顶层目录的Makefile,找到目标smdk2440_config的命令中的第三项(smdk2440) 2.进入目录board/samsung/smdk244 ...

随机推荐

  1. JavaScript学习系列博客_13_JavaScript中的对象(Object)简介

    对象 对象属于一种复合的数据类型,在对象中可以保存多个不同数据类型的属性.除了那5种基本数据类型,就是对象. 分类:1.内建对象- 由ES标准中定义的对象,在任何的ES的实现中都可以使用- 比如:Ma ...

  2. JavaScript学习系列博客_5_JavaScript中的强制类型转换

    -强制类型转换为String 1.方式1 调用被转换数据的toString()方法 number类型值.布尔类型值.都可以调用toString()方法强制转换.但是null值和undefined值不行 ...

  3. StructuredStreaming编程模型

    StructuredStreaming编程模型 基本概念 ◆ Time ◆ Trigger ◆ Input ◆ Query ◆ Result ◆ Output  案例模型:实时处理流单词统计编程模型 ...

  4. 喵的Unity游戏开发之路 - 轨道摄像机

    前言        很多童鞋没有系统的Unity3D游戏开发基础,也不知道从何开始学.为此我们精选了一套国外优秀的Unity3D游戏开发教程,翻译整理后放送给大家,教您从零开始一步一步掌握Unity3 ...

  5. 并发编程(叁):synchronize

    synchronize synchronized是Java中的关键字,是一种常用的线程同步锁. 用法 注意:在理解synchronized时,要知道一个核心点,synchronized锁定的不是代码, ...

  6. Trapdoors for Hard Lattices and New Cryptographic Constructions

    郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! 以下是对本文关键部分的摘抄翻译,详情请参见原文. Abstract 我们展示了如何构造各种“trapdoor”密码工具,假设标准格问题的最 ...

  7. Nodejs模块:path

    当前版本:v 10.16.0 一,获取文件相关信息 1,path.basename(filepath[, ext]) 获取该文件的文件名,如果有扩展名,则一起显示扩展名: 如果不想展示扩展名,只想展示 ...

  8. 关于action的使用在firefox报错的问题

    现在的网站有很多都是鼠标移到上面去才会显示出相应的一些标签之类的东西,然后再进行操作,但是因为要操作的元素一开始是隐藏的,就没办法直接定位,只能调用action来模拟鼠标悬停操作,也就是下面这句代码: ...

  9. 【原】“Error getting 'android:label' attribute”

    项目上线过程中遇到“Error getting 'android:label' attribute: attribute is not a string value”这个错误. 备忘下:是因为有act ...

  10. Spine学习三 - 同时播放两个动画

    这个效果和 Unity的动画分层有点儿像,比如 一个人有一个跑的动画,还有一个站在原地挥手的动画,Unity可以通过动画分层,让人物只需要使用这两个动画实现边跑边挥手的动画效果. 首先介绍一下Spin ...