一、基本概念
  在计算机科学中,分治法是一种很重要的算法。字面上的解释是“分而治之”,就是把一个复杂的问题分成两个或更多的相同或相似的子问题,再把子问题分成更小的子问题……直到最后子问题可以简单的直接求解,原问题的解即子问题的解的合并。这个技巧是很多高效算法的基础,如排序算法(快速排序,归并排序),傅立叶变换(快速傅立叶变换)……
  任何一个可以用计算机求解的问题所需的计算时间都与其规模有关。问题的规模越小,越容易直接求解,解题所需的计算时间也越少。例如,对于n个元素的排序问题,当n=1时,不需任何计算。n=2时,只要作一次比较即可排好序。n=3时只要作3次比较即可,…。而当n较大时,问题就不那么容易处理了。要想直接解决一个规模较大的问题,有时是相当困难的。

  二、基本思想及策略
  分治法的设计思想是:将一个难以直接解决的大问题,分割成一些规模较小的相同问题,以便各个击破,分而治之。
  分治策略是:对于一个规模为n的问题,若该问题可以容易地解决(比如说规模n较小)则直接解决,否则将其分解为k个规模较小的子问题,这些子问题互相独立且与原问题形式相同,递归地解这些子问题,然后将各子问题的解合并得到原问题的解。这种算法设计策略叫做分治法。
  如果原问题可分割成k个子问题,1<k≤n,且这些子问题都可解并可利用这些子问题的解求出原问题的解,那么这种分治法就是可行的。由分治法产生的子问题往往是原问题的较小模式,这就为使用递归技术提供了方便。在这种情况下,反复应用分治手段,可以使子问题与原问题类型一致而其规模却不断缩小,最终使子问题缩小到很容易直接求出其解。这自然导致递归过程的产生。分治与递归像一对孪生兄弟,经常同时应用在算法设计之中,并由此产生许多高效算法。

  三、分治法使用场景
  分治法所能解决的问题一般具有以下几个特征:
  1) 该问题的规模缩小到一定的程度就可以容易地解决
  2) 该问题可以分解为若干个规模较小的相同问题,即该问题具有最优子结构性质。
  3) 利用该问题分解出的子问题的解可以合并为该问题的解;
  4) 该问题所分解出的各个子问题是相互独立的,即子问题之间不包含公共的子子问题。
  第一条特征是绝大多数问题都可以满足的,因为问题的计算复杂性一般是随着问题规模的增加而增加;
  第二条特征是应用分治法的前提它也是大多数问题可以满足的,此特征反映了递归思想的应用;、
  第三条特征是关键,能否利用分治法完全取决于问题是否具有第三条特征,如果具备了第一条和第二条特征,而不具备第三条特征,则可以考虑用贪心法或动态规划法。
  第四条特征涉及到分治法的效率,如果各子问题是不独立的则分治法要做许多不必要的工作,重复地解公共的子问题,此时虽然可用分治法,但一般用动态规划法较好。

  四、分治法得基本步骤
  分治法在每一层递归上都有三个步骤:
  step1 分解:将原问题分解为若干个规模较小,相互独立,与原问题形式相同的子问题;
  step2 解决:若子问题规模较小而容易被解决则直接解,否则递归地解各个子问题
  step3 合并:将各个子问题的解合并为原问题的解。

  五、分治法的复杂性分析
  一个分治法将规模为n的问题分成k个规模为n/m的子问题去解。设分解阀值n0=1,且adhoc解规模为1的问题耗费1个单位时间。再设将原问题分解为k个子问题以及用merge将k个子问题的解合并为原问题的解需用f(n)个单位时间。用T(n)表示该分治法解规模为|P|=n的问题所需的计算时间,则有:
  T(n)= k T(n/m)+f(n)
  通过迭代法求得方程的解:
  递归方程及其解只给出n等于m的方幂时T(n)的值,但是如果认为T(n)足够平滑,那么由n等于m的方幂时T(n)的值可以估计T(n)的增长速度。通常假定T(n)是单调上升的,从而当mi≤n<mi+1时,T(mi)≤T(n)<T(mi+1)。

    六、可使用分治法求解的一些经典问题
  (1)二分搜索
  (2)大整数乘法
  (3)Strassen矩阵乘法
  (4)棋盘覆盖
  (5)合并排序
  (6)快速排序
  (7)线性时间选择
  (8)最接近点对问题
  (9)循环赛日程表
  (10)汉诺塔

    七、分治法示例——循环赛

public class SportsSchedule {
public static void scheduleTable(int[][] table, int n) {
if (n == 1) {
table[0][0] = 1;
} else {
// 填充左上区域矩阵
int m = n >> 1;
scheduleTable(table, m);
// 填充左下区域矩阵
for (int i = m; i < n; i++) {
for (int j = 0; j < m; j++) {
table[i][j] = table[i - m][j] + m;
}
}
// 填充右上区域矩阵
for (int i = 0; i < m; i++) {
for (int j = m; j < n; j++) {
table[i][j] = table[i][j - m] + m;
}
}
// 填充右下区域矩阵
for (int i = m; i < n; i++) {
for (int j = m; j < n; j++) {
table[i][j] = table[i - m][j - m];
}
}
}
} public static void main(String[] args) {
int n = 8;
int[][] table = new int[n][n];
scheduleTable(table, n);
for (int i = 0; i < table.length; i++) {
for (int j = 0; j < table[i].length; j++) {
System.out.print(table[i][j] + " ");
}
System.out.println();
}
}
}

Java算法——分治法的更多相关文章

  1. 算法笔记_065:分治法求逆序对(Java)

    目录 1 问题描述 2 解决方案 2.1 蛮力法 2.2 分治法(归并排序)   1 问题描述 给定一个随机数数组,求取这个数组中的逆序对总个数.要求时间效率尽可能高. 那么,何为逆序对? 引用自百度 ...

  2. Leedcode算法专题训练(分治法)

    归并排序就是一个用分治法的经典例子,这里我用它来举例描述一下上面的步骤: 1.归并排序首先把原问题拆分成2个规模更小的子问题. 2.递归地求解子问题,当子问题规模足够小时,可以一下子解决它.在这个例子 ...

  3. js算法:分治法-循环赛事日程表

    watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQv/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/ ...

  4. 算法与数据结构基础 - 分治法(Divide and Conquer)

    分治法基础 分治法(Divide and Conquer)顾名思义,思想核心是将问题拆分为子问题,对子问题求解.最终合并结果,分治法用伪代码表示如下: function f(input x size ...

  5. 查找最大和次大元素(JAVA版)(分治法)

    问题描述:对于给定的含有n个元素的无序序列,求这个序列中最大和次大的两个不同元素. 问题求解分析(分治法):先给出无序序列数组a[low...high].第一种情况为当数组中只有一个元素时,此时只存在 ...

  6. 《github一天一道算法题》:分治法求数组最大连续子序列和

    看书.思考.写代码. /*************************************** * copyright@hustyangju * blog: http://blog.csdn. ...

  7. 疯狂的Java算法——插入排序,归并排序以及并行归并排序

    从古至今的难题 在IT届有一道百算不厌其烦的题,俗称排序.不管是你参加BAT等高端笔试,亦或是藏匿于街头小巷的草根笔试,都会经常见到这样一道百年难得一解的问题. 今天LZ有幸与各位分享一下算法届的草根 ...

  8. JavaScript算法 ,Python算法,Go算法,java算法,系列之【归并排序】篇

    常见的内部排序算法有:插入排序.希尔排序.选择排序.冒泡排序.归并排序.快速排序.堆排序.基数排序等.用一张图概括: 归并排序(英语:Merge sort,或mergesort),是创建在归并操作上的 ...

  9. Java算法-求最大和的子数组序列

    问题:有一个连续数组,长度是确定的,它包含多个子数组,子数组中的内容必须是原数组内容中的一个连续片段,长度不唯一,子数组中每个元素相加的结果称为子数组的和,现要求找出和最大的一个子数组. 具体算法如下 ...

随机推荐

  1. ASP.NET Core中的响应压缩

    介绍     响应压缩技术是目前Web开发领域中比较常用的技术,在带宽资源受限的情况下,使用压缩技术是提升带宽负载的首选方案.我们熟悉的Web服务器,比如IIS.Tomcat.Nginx.Apache ...

  2. Python异常及异常处理

    Python异常及异常处理: 当程序运行时,发生的错误称为异常 例: 0 不能作为除数:ZeroDivisionError 变量未定义:NameError 不同类型进行相加:TypeError 异常处 ...

  3. PHP array_diff_uassoc() 函数

    实例 比较两个数组的键名和键值(使用用户自定义函数比较键名),并返回差集: <?phpfunction myfunction($a,$b){if ($a===$b){return 0;}retu ...

  4. PHP log() 函数

    实例 返回不同数的自然对数: <?phpecho(log(2.7183) . "<br>");echo(log(2) . "<br>&quo ...

  5. 牛客练习赛63 牛牛的斐波那契字符串 矩阵乘法 KMP

    LINK:牛牛的斐波那契字符串 虽然sb的事实没有改变 但是 也不会改变. 赛时 看了E和F题 都不咋会写 所以弃疗了. 中午又看了一遍F 发现很水 差分了一下就过了. 这是下午和古队长讨论+看题解的 ...

  6. 字节跳动2020-ByteCamp暑期夏令营研发组习题

    概要 本文主要是记录字节2020夏令营的笔试习题,解答部分待日后不断完善. 选择题部分记录不是很完全,剩下没有被收录的大都偏容易. 单项选择题 箱子里有20个红球,18个白球,逐一随机抽取球,问整个过 ...

  7. 用python包xlwt将数据写入Excel中

    一般用两种格式的数据写入,不多说放上demo. 1.列表形式写入 import xlwt def data_write(file_path, datas): f = xlwt.Workbook() s ...

  8. Android 给服务器发送网络请求

    今天听得有点蒙,因为服务器的问题,这边建立服务器的话,学长用的是Idea建立的Spring之类的方法去搞服务器. 然后就是用Android去给这个服务器发送请求,大致效果还是懂的,就是像网站发送请求, ...

  9. 一个C++版本的Sqlite3封装--SmartDb

    Sqlite是一个非常轻量级的开源数据库,在嵌入式系统中使用的比较多,存储管理数据非常方便,Sqlite库提供的基于C语言的API,用起来也挺简单,但是有一点不太好的就是API使用起来有些繁琐,另外就 ...

  10. Java线程生命周期与状态切换

    前提 最近有点懒散,没什么比较有深度的产出.刚好想重新研读一下JUC线程池的源码实现,在此之前先深入了解一下Java中的线程实现,包括线程的生命周期.状态切换以及线程的上下文切换等等.编写本文的时候, ...