P4718 [模板]Pollard-Rho算法
对一个大质数进行质因数分解 需要引用miller-robin来判素数
一直写的gcd居然挂掉了... 以后用__gcd了
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
#define ull unsigned long long
#define lb long double
ll maxfac; inline ll ksc(ull x,ull y,ll p){//O(1)快速乘(防爆long long)
return (x*y-(ull)((lb)x/p*y)*p+p)%p;
} ll pow_mod(ll x, ll y, ll mod) {
ll res = 1;
while(y) {
if(y & 1) res = ksc(res, x, mod);
x = ksc(x, x, mod);
y >>= 1;
}
return res;
} ll ABS(ll x) {
if(x < 0) return -x;
return x;
} inline bool mr(ll x,ll p){//mille rabin判质数
if(pow_mod(x, p-1, p) != 1) return false;//费马小定理
ll y = p - 1, z;
while(!(y & 1)){ //二次探测
y >>= 1;
z = pow_mod(x, y, p);
if(z != 1 && z != p - 1) return false;
if(z == p - 1) return true;
}
return true;
} inline bool isprime(ll x) {
if(x < 2) return false;//mille rabin判质数
if(x == 2 || x == 3 || x == 5 || x==7 || x == 43) return true;
return mr(2, x) && mr(3, x) && mr(5, x) && mr(7, x) && mr(43, x);
} inline ll rho(ll p){//求出p的非平凡因子
ll x, y, z, c, g; int i, j;//先摆出来(z用来存(y-x)的乘积)
while(1){//保证一定求出一个因子来
y = x = rand() % p;//随机初始化
z = 1; c = rand() % p;//初始化
i = 0, j = 1;//倍增初始化
while(++i){//开始玄学生成
x = (ksc(x, x, p) + c) % p;//可能要用快速乘
z = ksc(z, ABS(y - x), p);//我们将每一次的(y-x)都累乘起来
if(x == y || !z) break;//如果跑完了环就再换一组试试(注意当z=0时,继续下去是没意义的)
if(!(i % 127) || i == j){//我们不仅在等127次之后gcd我们还会倍增的来gcd
g = __gcd(z, p);
if(g > 1) return g;
if(i == j) y = x ,j <<= 1;//维护倍增正确性,并判环(一箭双雕)
}
}
}
} inline void prho(ll p) {
if(p <= maxfac) return;
if(isprime(p)) {
maxfac = p;
return;
}
ll pi = rho(p);//我们一次必定能求的出一个因子,所以不用while
while(p % pi == 0) p /= pi;//记得要除尽
prho(pi); prho(p);
} int main() {
int T;
scanf("%d", &T);
srand(time(0));
while(T--) {
//srand(time(0));
ll x;
scanf("%lld", &x);
maxfac = 1;
if(isprime(x)) puts("Prime");
else {
prho(x);
printf("%lld\n", maxfac);
}
}
return 0;
}
P4718 [模板]Pollard-Rho算法的更多相关文章
- Pollard Rho算法浅谈
Pollard Rho介绍 Pollard Rho算法是Pollard[1]在1975年[2]发明的一种将大整数因数分解的算法 其中Pollard来源于发明者Pollard的姓,Rho则来自内部伪随机 ...
- Pollard Rho 算法简介
\(\text{update 2019.8.18}\) 由于本人将大部分精力花在了cnblogs上,而不是洛谷博客,评论区提出的一些问题直到今天才解决. 下面给出的Pollard Rho函数已给出散点 ...
- Miller Rabin素数检测与Pollard Rho算法
一些前置知识可以看一下我的联赛前数学知识 如何判断一个数是否为质数 方法一:试除法 扫描\(2\sim \sqrt{n}\)之间的所有整数,依次检查它们能否整除\(n\),若都不能整除,则\(n\)是 ...
- Pollard rho算法+Miller Rabin算法 BZOJ 3668 Rabin-Miller算法
BZOJ 3667: Rabin-Miller算法 Time Limit: 60 Sec Memory Limit: 512 MBSubmit: 1044 Solved: 322[Submit][ ...
- 初学Pollard Rho算法
前言 \(Pollard\ Rho\)是一个著名的大数质因数分解算法,它的实现基于一个神奇的算法:\(MillerRabin\)素数测试(关于\(MillerRabin\),可以参考这篇博客:初学Mi ...
- 大整数分解质因数(Pollard rho算法)
#include <iostream> #include <cstring> #include <cstdlib> #include <stdio.h> ...
- BZOJ 5330 Luogu P4607 [SDOI2018]反回文串 (莫比乌斯反演、Pollard Rho算法)
题目链接 (BZOJ) https://www.lydsy.com/JudgeOnline/problem.php?id=5330 (Luogu) https://www.luogu.org/prob ...
- 【快速因数分解】Pollard's Rho 算法
Pollard-Rho 是一个很神奇的算法,用于在 $O(n^{\frac{1}4}) $的期望时间复杂度内计算合数 n 的某个非平凡因子(除了1和它本身以外能整除它的数).事书上给出的复杂度是 \( ...
- Miller-Rabin 素性测试 与 Pollard Rho 大整数分解
\(\\\) Miller-Rabin 素性测试 考虑如何检验一个数字是否为素数. 经典的试除法复杂度 \(O(\sqrt N)\) 适用于询问 \(N\le 10^{16}\) 的时候. 如果我们要 ...
- Pollard Rho因子分解算法
有一类问题,要求我们将一个正整数x,分解为两个非平凡因子(平凡因子为1与x)的乘积x=ab. 显然我们需要先检测x是否为素数(如果是素数将无解),可以使用Miller-Rabin算法来进行测试. Po ...
随机推荐
- 【Java基础】多线程
多线程 基本概念 程序(program)是为完成特定任务.用某种语言编写的一组指令的集合.即指一段静态的代码,静态对象. 进程(process)是程序的一次执行过程,或是正在运行的一个程序.是一个动态 ...
- LeetCode704 二分查找
给定一个 n 个元素有序的(升序)整型数组 nums 和一个目标值 target ,写一个函数搜索 nums 中的 target,如果目标值存在返回下标,否则返回 -1. 示例 1: 输入: num ...
- HBASE Shell基本命令
定义 HBASE是一种分布式.可扩展.支持海量数据存储的NoSQL数据库. HBASE数据模型 逻辑上,HBASE的数据模型同关系型数据库类似,数据存储到一张表中,有行有列,但是从HBASE的底层物理 ...
- 如何创建一个Java项目
目录 新建项目 项目信息配置 创建Java类 编译和运行 新建项目 首先双击eclipse进入到eclipse页面. 菜单"File"下的"New"里" ...
- 前端面试之JavaScript中数组的方法!【残缺版!!】
前端面试之JavaScript中数组常用的方法 7 join Array.join()方法将数组中所有元素都转化为字符串并连接在-起,返回最后生成的字 符串.可以指定一个可选的字符串在生成的字符串中来 ...
- Linux系统设置 SSH 通过密钥登录
我们一般使用 PuTTY 等 SSH 客户端来远程管理 Linux 服务器.但是,一般的密码方式登录,容易有密码被暴力破解的问题.所以,一般我们会将 SSH 的端口设置为默认的 22 以外的端口,或者 ...
- jmeter-登录获取cookie后参数化,或手动添加cookie, 再进行并发测试
以下情况其实并不适用于直接登录可以获取cookie情况,直接可以登录成功,直接添加cookie管理,cookie可以直接使用用于以下请求操作. 如果登录一次后,后续许多操作,可以将cookie管理器放 ...
- Netty之JAVA BIO模型
一.JAVA BIO模型 1.I/O模型 I/O 模型简单的理解:就是用什么样的通道进行数据的发送和接收,很大程度上决定了程序通信的性能 Java 共支持 3 种网络编程模型/IO 模式:BIO.NI ...
- javax.servlet.ServletException: No adapter for handler
问题描述: 我的web.xml如下: <?xml version="1.0" encoding="UTF-8"?> <web-app xmln ...
- Spring框架入门浅析
一.Spring Bean的配置 在需要被Spring框架创建对象的实体类的类声明前面加注解:```@component```.这样在Spring扫描的时候,看到该注解就会在容器中创建该实体类的对象. ...