对一个大质数进行质因数分解 需要引用miller-robin来判素数

一直写的gcd居然挂掉了... 以后用__gcd了

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
#define ull unsigned long long
#define lb long double
ll maxfac; inline ll ksc(ull x,ull y,ll p){//O(1)快速乘(防爆long long)
return (x*y-(ull)((lb)x/p*y)*p+p)%p;
} ll pow_mod(ll x, ll y, ll mod) {
ll res = 1;
while(y) {
if(y & 1) res = ksc(res, x, mod);
x = ksc(x, x, mod);
y >>= 1;
}
return res;
} ll ABS(ll x) {
if(x < 0) return -x;
return x;
} inline bool mr(ll x,ll p){//mille rabin判质数
if(pow_mod(x, p-1, p) != 1) return false;//费马小定理
ll y = p - 1, z;
while(!(y & 1)){ //二次探测
y >>= 1;
z = pow_mod(x, y, p);
if(z != 1 && z != p - 1) return false;
if(z == p - 1) return true;
}
return true;
} inline bool isprime(ll x) {
if(x < 2) return false;//mille rabin判质数
if(x == 2 || x == 3 || x == 5 || x==7 || x == 43) return true;
return mr(2, x) && mr(3, x) && mr(5, x) && mr(7, x) && mr(43, x);
} inline ll rho(ll p){//求出p的非平凡因子
ll x, y, z, c, g; int i, j;//先摆出来(z用来存(y-x)的乘积)
while(1){//保证一定求出一个因子来
y = x = rand() % p;//随机初始化
z = 1; c = rand() % p;//初始化
i = 0, j = 1;//倍增初始化
while(++i){//开始玄学生成
x = (ksc(x, x, p) + c) % p;//可能要用快速乘
z = ksc(z, ABS(y - x), p);//我们将每一次的(y-x)都累乘起来
if(x == y || !z) break;//如果跑完了环就再换一组试试(注意当z=0时,继续下去是没意义的)
if(!(i % 127) || i == j){//我们不仅在等127次之后gcd我们还会倍增的来gcd
g = __gcd(z, p);
if(g > 1) return g;
if(i == j) y = x ,j <<= 1;//维护倍增正确性,并判环(一箭双雕)
}
}
}
} inline void prho(ll p) {
if(p <= maxfac) return;
if(isprime(p)) {
maxfac = p;
return;
}
ll pi = rho(p);//我们一次必定能求的出一个因子,所以不用while
while(p % pi == 0) p /= pi;//记得要除尽
prho(pi); prho(p);
} int main() {
int T;
scanf("%d", &T);
srand(time(0));
while(T--) {
//srand(time(0));
ll x;
scanf("%lld", &x);
maxfac = 1;
if(isprime(x)) puts("Prime");
else {
prho(x);
printf("%lld\n", maxfac);
}
}
return 0;
}

P4718 [模板]Pollard-Rho算法的更多相关文章

  1. Pollard Rho算法浅谈

    Pollard Rho介绍 Pollard Rho算法是Pollard[1]在1975年[2]发明的一种将大整数因数分解的算法 其中Pollard来源于发明者Pollard的姓,Rho则来自内部伪随机 ...

  2. Pollard Rho 算法简介

    \(\text{update 2019.8.18}\) 由于本人将大部分精力花在了cnblogs上,而不是洛谷博客,评论区提出的一些问题直到今天才解决. 下面给出的Pollard Rho函数已给出散点 ...

  3. Miller Rabin素数检测与Pollard Rho算法

    一些前置知识可以看一下我的联赛前数学知识 如何判断一个数是否为质数 方法一:试除法 扫描\(2\sim \sqrt{n}\)之间的所有整数,依次检查它们能否整除\(n\),若都不能整除,则\(n\)是 ...

  4. Pollard rho算法+Miller Rabin算法 BZOJ 3668 Rabin-Miller算法

    BZOJ 3667: Rabin-Miller算法 Time Limit: 60 Sec  Memory Limit: 512 MBSubmit: 1044  Solved: 322[Submit][ ...

  5. 初学Pollard Rho算法

    前言 \(Pollard\ Rho\)是一个著名的大数质因数分解算法,它的实现基于一个神奇的算法:\(MillerRabin\)素数测试(关于\(MillerRabin\),可以参考这篇博客:初学Mi ...

  6. 大整数分解质因数(Pollard rho算法)

    #include <iostream> #include <cstring> #include <cstdlib> #include <stdio.h> ...

  7. BZOJ 5330 Luogu P4607 [SDOI2018]反回文串 (莫比乌斯反演、Pollard Rho算法)

    题目链接 (BZOJ) https://www.lydsy.com/JudgeOnline/problem.php?id=5330 (Luogu) https://www.luogu.org/prob ...

  8. 【快速因数分解】Pollard's Rho 算法

    Pollard-Rho 是一个很神奇的算法,用于在 $O(n^{\frac{1}4}) $的期望时间复杂度内计算合数 n 的某个非平凡因子(除了1和它本身以外能整除它的数).事书上给出的复杂度是 \( ...

  9. Miller-Rabin 素性测试 与 Pollard Rho 大整数分解

    \(\\\) Miller-Rabin 素性测试 考虑如何检验一个数字是否为素数. 经典的试除法复杂度 \(O(\sqrt N)\) 适用于询问 \(N\le 10^{16}\) 的时候. 如果我们要 ...

  10. Pollard Rho因子分解算法

    有一类问题,要求我们将一个正整数x,分解为两个非平凡因子(平凡因子为1与x)的乘积x=ab. 显然我们需要先检测x是否为素数(如果是素数将无解),可以使用Miller-Rabin算法来进行测试. Po ...

随机推荐

  1. 使用javafx开发一款桌面个性化软件

    本来笔者只是打算开发一个显示在桌面的cpu和内存监控工具,没想到迭代了几次版本之后变成了桌面个性化工具了. 目前实现功能: cpu和内存的实时监控 开机自动启动 自定义logo 自定义主题颜色 鼠标拖 ...

  2. Redis实战篇(一)搭建Redis实例

    今天是Redis实战系列的第一讲,先从如何搭建一个Redis实例开始. 下面介绍如何在Docker.Windows.Linux下安装. Docker下安装 1.查看可用的 Redis 版本 访问 Re ...

  3. SpringBoot配置文件(1)

    配置文件 1.配置文件 SpringBoot使用一个全局的配置文件 application.properties application.yml 配置文件名是固定的: 他的作用是修改SpringBoo ...

  4. TCP/IP五层模型-传输层-TCP协议

    ​1.定义:TCP是一种面向连接.可靠的.基于字节流的传输控制协议. 2.应用场景:TCP为可靠传输,适合对数据完整性要求高,对延时不敏感的场景,比如邮件. 3.TCP报文:①TCP报文格式: ②TC ...

  5. Vitis下载安装尝试

    Vitis下载安装记录 一.下载安装 文章目录 一.下载安装 提示:以下是本篇文章正文内容,下面案例可供参考 一.下载安装 首先本次下载主要使用的是linux系统,所以我们先看一下Vitis支持的li ...

  6. ajax异步实现文件分片上传

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  7. 电脑打不开gitHub的解决方法

    电脑打不开gitHub的解决方法 方法:修改本地的hosts文件 因为Github是国外网站,所以经常会遇到打不开的问题,并且有时能打开但是网速好慢 解决这个问题的方法是 :   C:\Windows ...

  8. pull push 监控指标

    Prometheus 原理介绍 - 知乎 https://zhuanlan.zhihu.com/p/70090800 Prometheus由Go语言编写而成,采用Pull方式获取监控信息,并提供了多维 ...

  9. CF 板刷总结

    CF 板刷总结 这件事的开始要从万圣节那一天说起.当然,万圣节只用于描述时间,我显然是不参加任何万圣节活动的对吧. 以下是一些我觉得有必要拿出来讲的,有技术含量的题.会持续更新,断更了记得来催更. C ...

  10. POJ2029 二维线段树

    Get Many Persimmon Trees POJ - 2029 Seiji Hayashi had been a professor of the Nisshinkan Samurai Sch ...