743. [网络流24题] 最长k可重区间集

★★★   输入文件:interv.in   输出文件:interv.out   简单对比
时间限制:1 s   内存限制:128 MB

«问题描述:

«编程任务:
对于给定的开区间集合I和正整数k,计算开区间集合I的最长k可重区间集的长度。
«数据输入:
由文件interv.in提供输入数据。文件的第1 行有2 个正整数n和k,分别表示开区间的
个数和开区间的可重迭数。接下来的n行,每行有2个整数,表示开区间的左右端点坐标。
«结果输出:
程序运行结束时,将计算出的最长k可重区间集的长度输出到文件interv.out中。
输入文件示例 输出文件示例
interv.in
4 2
1 7
6 8
7 10

9 13

interv.out

15

这样的区间建图比较好想,因为以前做过用最短路的最小区间覆盖问题,想法类似

BYVOID:

离散化所有区间的端点,把每个端点看做一个顶点,建立附加源S汇T。

1、从S到顶点1(最左边顶点)连接一条容量为K,费用为0的有向边。
2、从顶点2N(最右边顶点)到T连接一条容量为K,费用为0的有向边。
3、从顶点i到顶点i+1(i+1<=2N),连接一条容量为无穷大,费用为0的有向边。
4、对于每个区间[a,b],从a对应的顶点i到b对应的顶点j连接一条容量为1,费用为区间长度的有向边。

两点:

1.相邻的连一条边,避免了每个点都和s t连边

2.容量限制为k,经过每个点的边数一定<=k

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
typedef long long ll;
const int N=,M=1e5+,INF=1e9;
inline int read(){
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-; c=getchar();}
while(c>=''&&c<=''){x=x*+c-''; c=getchar();}
return x*f;
}
int n,k,mp[N],m,l[N],r[N],s,t;
int Bin(int v){
int l=,r=m;
while(l<=r){
int mid=(l+r)>>;
if(mp[mid]==v) return mid;
if(v<mp[mid]) r=mid-;
else l=mid+;
}
return -;
}
struct edge{
int v,ne,c,f,w;
}e[M<<];
int cnt,h[N];
inline void ins(int u,int v,int c,int w){
//printf("ins %d %d %d %d %d %d\n",u,v,c,w,mp[u],mp[v]);
cnt++;
e[cnt].v=v;e[cnt].c=c;e[cnt].f=;e[cnt].w=w;
e[cnt].ne=h[u];h[u]=cnt;
cnt++;
e[cnt].v=u;e[cnt].c=;e[cnt].f=;e[cnt].w=-w;
e[cnt].ne=h[v];h[v]=cnt;
}
void build(){
s=;t=m+;
ins(s,,k,);ins(m,t,k,);
for(int i=;i<m;i++)
ins(i,i+,INF,);
for(int i=;i<=n;i++)
ins(Bin(l[i]),Bin(r[i]),,-(r[i]-l[i]));
}
int q[N],head,tail,d[N],inq[N],pre[N],pos[N];
inline void lop(int &x){if(x==N) x=;else if(x==) x=N-;}
bool spfa(){
memset(d,,sizeof(d));
memset(inq,,sizeof(inq));
head=tail=;
q[tail++]=s;inq[s]=;d[s]=;
pre[t]=-;
while(head!=tail){
int u=q[head++];inq[u]=;lop(head);
for(int i=h[u];i;i=e[i].ne){
int v=e[i].v,w=e[i].w;
if(e[i].c>e[i].f&&d[v]>d[u]+w){
d[v]=d[u]+w;
pos[v]=i;pre[v]=u;
if(!inq[v]){
inq[v]=;
if(d[v]<d[q[head]]) head--,lop(head),q[head]=v;
else q[tail++]=v,lop(tail);
}
}
}
}
return pre[t]!=-;
}
int mcmf(){
int flow=,cost=;
while(spfa()){
int f=INF;
for(int i=t;i!=s;i=pre[i]) f=min(f,e[pos[i]].c-e[pos[i]].f);
flow+=f;cost+=-d[t]*f;//printf("flow %d\n",flow);
for(int i=t;i!=s;i=pre[i]){
int p=pos[i];
e[p].f+=f;
e[((p-)^)+].f-=f;
}
}
return cost;
}
int main(){
freopen("interv.in","r",stdin);
freopen("interv.out","w",stdout);
n=read();k=read();
for(int i=;i<=n;i++) mp[++m]=l[i]=read(),mp[++m]=r[i]=read();
sort(mp+,mp++m);
int p=;mp[++p]=mp[];
for(int i=;i<=m;i++) if(mp[i]!=mp[i-]) mp[++p]=mp[i];
m=p;
build();
printf("%d\n",mcmf());
}

COGS743. [网络流24题] 最长k可重区间集的更多相关文章

  1. [网络流24题]最长k可重区间集[题解]

    最长 \(k\) 可重区间集 题目大意 给定实心直线 \(L\) 上 \(n\) 个开区间组成的集合 \(I\) ,和一个正整数 \(k\) ,试设计一个算法,从开区间集合 \(I\) 中选取开区间集 ...

  2. [网络流24题] 最长k可重区间集

    https://www.luogu.org/problemnew/show/3358 以区间(1,5),(2,6),(7,8)为例 建模方法一: 建模方法二: 离散化区间端点 相当于找k条费用最大的不 ...

  3. [网络流24题] 最长K可重区间集问题

    题目链接:戳我 当时刷24题的时候偷了懒,没有写完,结果落下这道题没有写qwq结果今天考试T3中就有一部分要用到这个思想,蒟蒻我硬是没有想到网络流呜呜呜 最大费用流. 就是我们考虑将问题转化一下,转化 ...

  4. [网络流24题] 最长k可重区间集问题 (费用流)

    洛谷传送门 LOJ传送门 很巧妙的建图啊...刚了$1h$也没想出来,最后看的题解 发现这道题并不类似于我们平时做的网络流题,它是在序列上的,且很难建出来二分图的形. 那就让它在序列上待着吧= = 对 ...

  5. [网络流24题]最长k可重线段集[题解]

    最长 \(k\) 可重线段集 题目大意 给定平面 \(x-O-y\) 上 \(n\) 个开线段组成的集合 \(I\) ,和一个正整数 \(k\) .试设计一个算法,从开线段集合 \(I\) 中选取开线 ...

  6. [网络流24题] 最长k可重线段集问题 (费用流)

    洛谷传送门 LOJ传送门 最长k可重区间集问题的加强版 大体思路都一样的,不再赘述,但有一些细节需要注意 首先,坐标有负数,而且需要开$longlong$算距离 但下面才是重点: 我们把问题放到了二维 ...

  7. 网络流24题-最长k可重线段集问题

    最长k可重线段集问题 时空限制1000ms / 128MB 题目描述 给定平面 x−O−y 上 n 个开线段组成的集合 I,和一个正整数 k .试设计一个算法,从开线段集合 I 中选取出开线段集合 S ...

  8. 【网络流24题】最长k可重区间集(费用流)

    [网络流24题]最长k可重区间集(费用流) 题面 Cogs Loj 洛谷 题解 首先注意一下 这道题目里面 在Cogs上直接做就行了 洛谷和Loj上需要判断数据合法,如果\(l>r\)就要交换\ ...

  9. LibreOJ #6014. 「网络流 24 题」最长 k 可重区间集

    #6014. 「网络流 24 题」最长 k 可重区间集 内存限制:256 MiB时间限制:1000 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: 匿名 提交提交记录统计讨论测试数据   ...

随机推荐

  1. C#中实现对象间的更新操作

    最近工作的时候遇到一个问题,根据Web端接收到的对象obj1,更新对应的对象值ogj2.先判断obj1中属性值是否为null, 若不等于null,则更新obj2中对应属性值:若等于null,则保持ob ...

  2. webapi filter过滤器中获得请求的方法详情(方法名,Attributes)

    public class GlobalActionFilter : ActionFilterAttribute { private string _requestId; public override ...

  3. Java并发编程:线程池的使用

    Java并发编程:线程池的使用 在前面的文章中,我们使用线程的时候就去创建一个线程,这样实现起来非常简便,但是就会有一个问题: 如果并发的线程数量很多,并且每个线程都是执行一个时间很短的任务就结束了, ...

  4. oracle函数大全(转载)

    F.1字符函数--返回字符值 这些函数全都接收的是字符族类型的参数(CHR除外)并且返回字符值.除了特别说明的之外,这些函数大部分返回VARCHAR2类型的数值.字符函数的返回类型所受的限制和基本数据 ...

  5. Java基础学习总结——Java对象的序列化和反序列化

    一.序列化和反序列化的概念 把对象转换为字节序列的过程称为对象的序列化. 把字节序列恢复为对象的过程称为对象的反序列化. 对象的序列化主要有两种用途: 1) 把对象的字节序列永久地保存到硬盘上,通常存 ...

  6. Lind.DDD敏捷领域驱动框架~Lind.DDD各层介绍

    回到目录 Lind.DDD项目主要面向敏捷,快速开发,领域驱动等,对于它的分层也是能合并的合并,比之前大叔的框架分层更粗糙一些,或者说更大胆一些,在开发人员使用上,可能会感觉更方便了,更益使用了,这就 ...

  7. JMeter专题系列(二)录制脚本

    环境 Badboy  version 2.1.1 JDK: 1.7.0_67 Apache  JMeter-2.11 ----------------------------------------- ...

  8. jquery.zclip轻量级复制失效问题

    工作原理 利用一个透明的 Flash ,让其漂浮在按钮之上,这样其实点击的不是按钮而是 Flash ,也就可以使用 Flash 的复制功能了 <script src="js/jquer ...

  9. 程序员用HTML5制作的爱心树表白动画

    体验效果:http://keleyi.com/keleyi/phtml/html5/31.htm 推荐:http://hovertree.com/texiao/css3/18/ HTML代码如下: & ...

  10. JS中的函数(二):函数参数(你可能不知道的参数传递)

    前言: 函数分为有参有返回值,有参无返回值,无参无返回值,无参有返回值:那么对于无参数的函数你想使用函数的调用怎么办呢?如果你想封装一个代码,实现多种功能,但是形参大于实参或者实参大于形参又该如何?本 ...