【luogu6082】

【题目描述】

某售货员小T要到若干城镇去推销商品,由于该地区是交通不便的山区,任意两个城镇之间都只有唯一的可能经过其它城镇的路线。

小T 可以准确地估计出在每个城镇停留的净收益。这些净收益可能是负数,即推销商品的利润抵不上花费。

由于交通不便,小T经过每个城镇都需要停留,在每个城镇的停留次数与在该地的净收益无关,因为很多费用不是计次收取的,而每个城镇对小T的商品需求也是相对固定的,停留一次后就饱和了。

每个城镇为了强化治安,对外地人的最多停留次数有严格的规定。

请你帮小T 设计一个收益最大的巡回方案,即从家乡出发,在经过的每个城镇停留,最后回到家乡的旅行方案。

你的程序只需输出最大收益,以及最优方案是否唯一。

方案并不包括路线的细节,方案相同的标准是选择经过并停留的城镇是否相同。因为取消巡回也是一种方案,因此最大收益不会是负数。

小T 在家乡净收益是零,因为在家乡是本地人,家乡对小 T当然没有停留次数的限制。

【Input】

输入的第一行是一个正整数n(5<=n<=100000),表示城镇数目。城镇以1到n的数命名。

小T 的家乡命名为1。

第二行和第三行都包含以空格隔开的n-1个整数,第二行的第i个数表示在城镇i+1停留的净收益。第三行的第i个数表示城镇i+1规定的最大停留次数。

所有的最大停留次数都不小于2。

接下来的n-1行每行两个1到n的正整数x,y,之间以一个空格隔开,表示x,y之间有一条不经过其它城镇的双向道路。

输入数据保证所有城镇是连通的。

【Output】

输出有两行,第一行包含一个自然数,表示巡回旅行的最大收益。

如果该方案唯一,在第二行输出“solution is unique”,否则在第二行输出“solution is not unique”。

【Sample Input】

  9
  -3 -4 2 4 -2 3 4 6
  4 4 2 2 2 2 2 2
  1 2
  1 3
  1 4
  2 5
  2 6
  3 7
  4 8
  4 9 【Sample Output】

  9

   solution is unique

【Solution】
这个题目乍一看是个图诶
但是是DAG
就相当于一棵树
那么考虑到状态不同决策不同
很容易联想到动态规划

对于第一个问题
  关键是考虑每一个点的访问限制
  假设对于当前点i的限制是cnt[i]
  那么最多只能访问其cnt[i] - 1棵子树
  因为要留出一次机会回溯到出发点
  对于家乡的话就初始化成最大值,无限制访问

对于第二个问题
  路径唯一或不唯一
  唯一的情况不用解释
  不唯一的情况: 

  • 存在一种最优方案使得经过的某个点 u 满足dp[u]​=0 。
  • 存在在一种最优方案使得经过的某个点 u 存在至少 cnt[u]​ 个儿子, 且第 cnt[u]​ 大收益非负的儿子不唯一。(权值相同)

重点:1.给所有的子树进行排序,取前cnt[i] - 1棵子树

   2.排序后取到负值后结束

//YouXam
#include <algorithm>
#include <cstdio>
#include <cstring>
using namespace std;
const int N = ;
struct edge {
int i, next;
} edges[ * N + ];
int head[N + ], tot, n, w[N + ], limit[N + ], dp[N + ], ansn[N + ],sonn[N + ];
void add(int u, int v) {
edges[++tot].i = v;
edges[tot].next = head[u];
head[u] = tot;
}
bool cmp(int a, int b) { return dp[a] > dp[b]; }
void dfs(int root, int f) {
dp[root] = w[root];
int sontot = , soni = ;
for (int i = head[root]; i; i = edges[i].next)
if (edges[i].i != f) dfs(edges[i].i, root);
for (int i = head[root]; i; i = edges[i].next)
if (edges[i].i != f) sonn[++sontot] = edges[i].i;
sort(sonn + , sonn + + sontot, cmp);
while (soni < min(limit[root] - , sontot) && dp[sonn[soni + ]] >= )
dp[root] += dp[sonn[++soni]], ansn[root] |= ansn[sonn[soni]];//按位或
if (soni < sontot && soni > && dp[sonn[soni]] == dp[sonn[soni + ]] || dp[sonn[soni]] == && soni > && soni <= limit[root] - )//两种情况,注意边界
ansn[root] = ;
}
int main() {
scanf("%d", &n);
for (int i = ; i < n; i++) scanf("%d", &w[i + ]);
for (int i = ; i < n; i++) scanf("%d", &limit[i + ]);
for (int i = ; i < n; i++) {
int u, v;
scanf("%d%d", &u, &v);
add(u, v);
add(v, u);
}
limit[] = n + ;//在家乡没有停留限制
dfs(, );
printf("%d\n%s", dp[], ansn[] ? "solution is not unique" : "solution is unique");
return ;
}

Code

JSOI2015 Salesman(树型DP)的更多相关文章

  1. POJ3659 Cell Phone Network(树上最小支配集:树型DP)

    题目求一棵树的最小支配数. 支配集,即把图的点分成两个集合,所有非支配集内的点都和支配集内的某一点相邻. 听说即使是二分图,最小支配集的求解也是还没多项式算法的.而树上求最小支配集树型DP就OK了. ...

  2. POJ 3342 - Party at Hali-Bula 树型DP+最优解唯一性判断

    好久没写树型dp了...以前都是先找到叶子节点.用队列维护来做的...这次学着vector动态数组+DFS回朔的方法..感觉思路更加的清晰... 关于题目的第一问...能邀请到的最多人数..so ea ...

  3. 【XSY1905】【XSY2761】新访问计划 二分 树型DP

    题目描述 给你一棵树,你要从\(1\)号点出发,经过这棵树的每条边至少一次,最后回到\(1\)号点,经过一条边要花费\(w_i\)的时间. 你还可以乘车,从一个点取另一个点,需要花费\(c\)的时间. ...

  4. 洛谷P3354 Riv河流 [IOI2005] 树型dp

    正解:树型dp 解题报告: 传送门! 简要题意:有棵树,每个节点有个权值w,要求选k个节点,最大化∑dis*w,其中如果某个节点到根的路径上选了别的节点,dis指的是到达那个节点的距离 首先这个一看就 ...

  5. 【POJ 3140】 Contestants Division(树型dp)

    id=3140">[POJ 3140] Contestants Division(树型dp) Time Limit: 2000MS   Memory Limit: 65536K Tot ...

  6. Codeforces 581F Zublicanes and Mumocrates(树型DP)

    题目链接  Round 322 Problem F 题意  给定一棵树,保证叶子结点个数为$2$(也就是度数为$1$的结点),现在要把所有的点染色(黑或白) 要求一半叶子结点的颜色为白,一半叶子结点的 ...

  7. ZOJ 3949 (17th 浙大校赛 B题,树型DP)

    题目链接  The 17th Zhejiang University Programming Contest Problem B 题意  给定一棵树,现在要加一条连接$1$(根结点)和$x$的边,求加 ...

  8. BZOJ 1564 :[NOI2009]二叉查找树(树型DP)

    二叉查找树 [题目描述] 已知一棵特殊的二叉查找树.根据定义,该二叉查找树中每个结点的数据值都比它左儿子结点的数据值大,而比它右儿子结点的数据值小. 另一方面,这棵查找树中每个结点都有一个权值,每个结 ...

  9. Codeforces 149D Coloring Brackets(树型DP)

    题目链接 Coloring Brackets 考虑树型DP.(我参考了Q巨的代码还是略不理解……) 首先在序列的最外面加一对括号.预处理出DFS树. 每个点有9中状态.假设0位不涂色,1为涂红色,2为 ...

  10. HDU 5905 Black White Tree(树型DP)

    题目链接  Black White Tree 树型DP,设$f[i][j]$为以$i$为根的子树中大小为$j$的连通块中可以包含的最小黑点数目. $g[i][j]$为以$i$为根的子树中大小为$j$的 ...

随机推荐

  1. MAC抓包工具Charles安装及破解

    参考资料:https://juejin.im/post/5c0a430f51882516207d205d 下载 Charles官网下载安装包,下载成功后根据指示安装即可 官网地址:http://www ...

  2. 什么?你还不会获取地址栏(url)的值

    function getUrlParam(name) {//封装方法 var reg = new RegExp("(^|&)" + name + "=([^&am ...

  3. 04-Python基础3

    本节内容 迭代器&生成器 装饰器 Json & pickle 数据序列化 软件目录结构规范 作业:ATM项目开发 1.列表生成式,迭代器&生成器 列表生成式 孩子,我现在有个需 ...

  4. 基于 abp vNext 和 .NET Core 开发博客项目 - Blazor 实战系列(三)

    系列文章 基于 abp vNext 和 .NET Core 开发博客项目 - 使用 abp cli 搭建项目 基于 abp vNext 和 .NET Core 开发博客项目 - 给项目瘦身,让它跑起来 ...

  5. 如何在本地搭建微信小程序服务器

    现在开发需要购买服务器,价格还是有点贵的,可以花费小代价就可以搭建一个服务器,可以用来开发小程序,博客等. 1.域名(备案过的) 2.阿里云注册免费的https证书 3.配置本地的nginx 4.内网 ...

  6. EIGRP-16-其他和高级的EIGRP特性-2-非等价负载分担

    与大多数内部路由协议不同的是, EIGRP能够将流量负载分到多条非等价路径上,而不仅仅使用去往目的地最近距离的那一条路径.提供这项功能的特性称为非等价负载分担.   非等价负载分担的核心概念是可行后继 ...

  7. WPF中DataTemplateSelector的简单应用

    WPF中DataTemplateSelector的简单应用 DataTemplateSelector中文叫数据模板选择器,根据数据模型内的属性值选择不同的数据模板,多用于容器如listbox中,达到同 ...

  8. Node.js 学习笔记(一)

    node.js说白了就是JavaScript. node.js的性能是php的86倍(大概). 在下载完后可以用命令行打开及运行.   什么是 Web 服务器? Web服务器一般指网站服务器,是指驻留 ...

  9. flutter pdf 文件浏览

    说明 flutter_full_pdf_viewer 可以实现从网络上下载 pdf 文件并且显示出来. 包地址:flutter_full_pdf_viewer: ^1.0.6 使用方法 1.在 pub ...

  10. [每日一题2020.06.17] leetcode周赛T3 5438 制作m束花所需的最少天数 二分搜索

    题目链接 这题我开始一直在想如何在数组上dp操作搜索区间, 很蠢, 实际上用二分查找的方法可以很快的解决 首先我们通过一个函数判断第x天是否符合题意, 如果x天可以做出m束花, 那么大于m的天数必然可 ...