题目

The first stage of train system reform (that has been described in the problem Railways of the third stage of 14th Polish OI.

However, one needs not be familiar with that problem in order to solve this task.) has come to an end in Byteotia. The system consists of bidirectional segments of tracks that connect railway stations. No two stations are (directly) connected by more than one segment of tracks.

Furthermore, it is known that every railway station is reachable from every other station by a unique route. This route may consist of several segments of tracks, but it never leads through one station more than once.

The second stage of the reform aims at developing train connections.

Byteasar count on your aid in this task. To make things easier, Byteasar has decided that:

one of the stations is to became a giant hub and receive the glorious name of Bitwise, for every other station a connection to Bitwise and back is to be set up, each train will travel between Bitwise and its other destination back and forth along the only possible route, stopping at each intermediate station.

It remains yet to decide which station should become Bitwise. It has been decided that the average cost of travel between two different stations should be minimal.

In Byteotia there are only one-way-one-use tickets at the modest price of bythaler, authorising the owner to travel along exactly one segment of tracks, no matter how long it is.

Thus the cost of travel between any two stations is simply the minimum number of tracks segments one has to ride along to get from one stations to the other.

Task Write a programme that:

reads the description of the train system of Byteotia, determines the station that should become Bitwise, writes out the result to the standard output.

给出一个N个点的树,找出一个点来,以这个点为根的树时,所有点的深度之和最大

输入格式

给出一个数字\(N\),代表有\(N\)个点.\(N<=1000000\) 下面\(N-1\)条边.

输出格式

输出你所找到的点,如果具有多个解,请输出编号最小的那个.

题解

随便取一个点做根,比如1号节点,然后从1号节点出发dfs每个节点,算出每棵子树的大小和每个节点的深度

然后再一次dfs,树形dp,求每个点做根时,所有点的深度之和,然后输出最大值即可.

那么转移方程怎么考虑?

这棵树从\(fa\)搜到\(root\)的时候,如何转移?

dp值的含义是所有点的深度,那么在树根从\(fa\)变成\(root\)时,所有点的深度之和怎么变化?

显然红色圈内所有点的深度+1,紫色圈内所有点深度-1

紫色圈内点数就是以\(root\)为根的子树的大小,记为\(size\),则紫色圈内点数就是总点数减去\(size\)即\(n-size\)

所以转移方程就是:

\(dp_{root} = dp_{fa} - size_{root} + (n-size_{root})
\\\ \ \ \ \ \ \ \ \ \ \ = dp_{fa} + n - 2 \times size_{root}
\)

还要注意用long long

代码

#include <cstdio>
const int maxn = 1000005;
int head[maxn], tot, n, ans, fa[maxn], size[maxn], ix, iy;
long long dp[maxn];
struct Edge { int to, next; } edges[maxn << 1];
inline int input() { int t; scanf("%d", &t); return t; }
void add(int x, int y) { edges[++tot].to = y; edges[tot].next = head[x]; head[x] = tot; }
void dfs(int root, int fa) {
size[root] = 1;
for (int x = head[root]; x; x = edges[x].next) {
if (edges[x].to == fa) continue;
dfs(edges[x].to, root);
size[root] += size[edges[x].to];
dp[root] += dp[edges[x].to] + size[edges[x].to];
}
}
void dpf(int root, int fa) {
if (root != 1) dp[root] = dp[fa] + n - size[root] * 2;
for (int x = head[root]; x; x = edges[x].next)
if (edges[x].to != fa) dpf(edges[x].to, root);
}
int main() {
n = input();
for (int i = 1; i < n; i++) add(ix = input(), iy = input()), add(iy, ix);
dfs(1, 0), dpf(1, 0);
for (int i = 1; i <= n; i++) if (dp[i] > dp[ans]) ans = i;
printf("%d\n", ans);
}

BZOJ 1131 [POI2008] STA-Station 题解的更多相关文章

  1. BZOJ 1131: [POI2008]Sta( dfs )

    对于一棵树, 考虑root的答案向它的孩子转移, 应该是 ans[son] = (ans[root] - size[son]) + (n - size[son]). so , 先 dfs 预处理一下, ...

  2. bzoj 1131 [POI2008]Sta 树形dp 转移根模板题

    [POI2008]Sta Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1889  Solved: 729[Submit][Status][Discu ...

  3. BZOJ 1131 [POI2008]Sta(树形DP)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1131 [题目大意] 给出一个N个点的树,找出一个点来,以这个点为根的树时,所有点的深度 ...

  4. BZOJ 1131: [POI2008]Sta

    Description 一棵树,问以那个节点为根时根的总和最大. Sol DFS+树形DP. 第一遍统计一下 size 和 d. 第二遍转移根,统计答案就行了. Code /************* ...

  5. 1131: [POI2008]Sta

    1131: [POI2008]Sta Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 783  Solved: 235[Submit][Status] ...

  6. Bzoj 1131[POI2008]STA-Station (树形DP)

    Bzoj 1131[POI2008]STA-Station (树形DP) 状态: 设\(f[i]\)为以\(i\)为根的深度之和,然后考虑从他父亲转移. 发现儿子的深度及其自己的深度\(-1\) 其余 ...

  7. BZOJ1131 POI2008 Sta 【树形DP】

    BZOJ1131 POI2008 Sta Description 给出一个N个点的树,找出一个点来,以这个点为根的树时,所有点的深度之和最大 Input 给出一个数字N,代表有N个点.N<=10 ...

  8. BZOJ 4033: [HAOI2015]树上染色题解

    BZOJ 4033: [HAOI2015]树上染色题解(树形dp) 标签:题解 阅读体验:https://zybuluo.com/Junlier/note/1327400 原题地址: BZOJ 403 ...

  9. [POI2008]Sta(树形dp)

    [POI2008]Sta Description 给出一个N个点的树,找出一个点来,以这个点为根的树时,所有点的深度之和最大 Input 给出一个数字N,代表有N个点.N<=1000000 下面 ...

随机推荐

  1. Linux 文件系统常用命令

    文件系统查看命令df df:查看分区,单位默认是KB df -h 统计目录或文件大小du du /etc/:会列出/etc/目录下的所有子目录所占的空间,最后给出/etc/目录的大小,属于高负载命令, ...

  2. QPS、TPS、并发用户数、吞吐量关系

    1.QPS QPS Queries Per Second  是每秒查询率 ,是一台服务器每秒能够相应的查询次数,是对一个特定的查询服务器在规定时间内所处理流量多少的衡量标准, 即每秒的响应请求数,也即 ...

  3. (一)c++之细解 const 与 static

    const成员变量与const成员函数与const对象 static成员变量与static成员函数与static全局变量 const成员变量 1. const用于类中成员变量时,将类成员变为只读属性( ...

  4. Android开发项目中常用到的开源库

    圆形头像 https://github.com/hdodenhof/CircleImageView ButterKnife https://github.com/JakeWharton/butterk ...

  5. RocketMQ系列(三)消息的生产与消费

    前面的章节,我们已经把RocketMQ的环境搭建起来了,是一个两主两从的异步集群.接下来,我们就看看怎么去使用RocketMQ,在使用之前,先要在NameServer中创建Topic,我们知道Rock ...

  6. QingStor 对象存储架构设计及最佳实践

    对象存储概念及特性 在介绍 QingStor️对象存储内部的的架构和设计原理之前,我们首先来了解一下对象存储的概念,也就是从外部视角看,对象存储有什么特性,我们应该如何使用. 对象存储本质上是一款存储 ...

  7. Prometheus监控Docker Swarm集群(一)

    Prometheus监控Docker Swarm集群(一) cAdvisor简介 为了解决容器的监控问题,Google开发了一款容器监控工具cAdvisor(Container Advisor),它为 ...

  8. 单页面应用下刷新当前iframe

    $('button.layui-btn-elastic-2').click(function(){ var srcIframe=$(".layui-side ul li dd"). ...

  9. pdb--Python调试器

    使用python编写程序,必然会遇见bug,而pdb就是python语言的一个好的debugger. 下面介绍pdb的使用方式 1. 单步执行代码,通过命令 python -m pdb xxx.py ...

  10. 恕我直言你可能真的不会java第2篇:Java Stream API?

    一.什么是Java Stream API? Java Stream函数式编程接口最初是在Java 8中引入的,并且与lambda一起成为Java开发的里程碑式的功能特性,它极大的方便了开放人员处理集合 ...