BZOJ 1131 [POI2008] STA-Station 题解
题目
The first stage of train system reform (that has been described in the problem Railways of the third stage of 14th Polish OI.
However, one needs not be familiar with that problem in order to solve this task.) has come to an end in Byteotia. The system consists of bidirectional segments of tracks that connect railway stations. No two stations are (directly) connected by more than one segment of tracks.
Furthermore, it is known that every railway station is reachable from every other station by a unique route. This route may consist of several segments of tracks, but it never leads through one station more than once.
The second stage of the reform aims at developing train connections.
Byteasar count on your aid in this task. To make things easier, Byteasar has decided that:
one of the stations is to became a giant hub and receive the glorious name of Bitwise, for every other station a connection to Bitwise and back is to be set up, each train will travel between Bitwise and its other destination back and forth along the only possible route, stopping at each intermediate station.
It remains yet to decide which station should become Bitwise. It has been decided that the average cost of travel between two different stations should be minimal.
In Byteotia there are only one-way-one-use tickets at the modest price of bythaler, authorising the owner to travel along exactly one segment of tracks, no matter how long it is.
Thus the cost of travel between any two stations is simply the minimum number of tracks segments one has to ride along to get from one stations to the other.
Task Write a programme that:
reads the description of the train system of Byteotia, determines the station that should become Bitwise, writes out the result to the standard output.
给出一个N个点的树,找出一个点来,以这个点为根的树时,所有点的深度之和最大
输入格式
给出一个数字\(N\),代表有\(N\)个点.\(N<=1000000\) 下面\(N-1\)条边.
输出格式
输出你所找到的点,如果具有多个解,请输出编号最小的那个.
题解
随便取一个点做根,比如1号节点,然后从1号节点出发dfs每个节点,算出每棵子树的大小和每个节点的深度
然后再一次dfs,树形dp,求每个点做根时,所有点的深度之和,然后输出最大值即可.
那么转移方程怎么考虑?

这棵树从\(fa\)搜到\(root\)的时候,如何转移?
dp值的含义是所有点的深度,那么在树根从\(fa\)变成\(root\)时,所有点的深度之和怎么变化?
显然红色圈内所有点的深度+1,紫色圈内所有点深度-1
紫色圈内点数就是以\(root\)为根的子树的大小,记为\(size\),则紫色圈内点数就是总点数减去\(size\)即\(n-size\)
所以转移方程就是:
\(dp_{root} = dp_{fa} - size_{root} + (n-size_{root})
\\\ \ \ \ \ \ \ \ \ \ \ = dp_{fa} + n - 2 \times size_{root}
\)
还要注意用long long
代码
#include <cstdio>
const int maxn = 1000005;
int head[maxn], tot, n, ans, fa[maxn], size[maxn], ix, iy;
long long dp[maxn];
struct Edge { int to, next; } edges[maxn << 1];
inline int input() { int t; scanf("%d", &t); return t; }
void add(int x, int y) { edges[++tot].to = y; edges[tot].next = head[x]; head[x] = tot; }
void dfs(int root, int fa) {
size[root] = 1;
for (int x = head[root]; x; x = edges[x].next) {
if (edges[x].to == fa) continue;
dfs(edges[x].to, root);
size[root] += size[edges[x].to];
dp[root] += dp[edges[x].to] + size[edges[x].to];
}
}
void dpf(int root, int fa) {
if (root != 1) dp[root] = dp[fa] + n - size[root] * 2;
for (int x = head[root]; x; x = edges[x].next)
if (edges[x].to != fa) dpf(edges[x].to, root);
}
int main() {
n = input();
for (int i = 1; i < n; i++) add(ix = input(), iy = input()), add(iy, ix);
dfs(1, 0), dpf(1, 0);
for (int i = 1; i <= n; i++) if (dp[i] > dp[ans]) ans = i;
printf("%d\n", ans);
}
BZOJ 1131 [POI2008] STA-Station 题解的更多相关文章
- BZOJ 1131: [POI2008]Sta( dfs )
对于一棵树, 考虑root的答案向它的孩子转移, 应该是 ans[son] = (ans[root] - size[son]) + (n - size[son]). so , 先 dfs 预处理一下, ...
- bzoj 1131 [POI2008]Sta 树形dp 转移根模板题
[POI2008]Sta Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1889 Solved: 729[Submit][Status][Discu ...
- BZOJ 1131 [POI2008]Sta(树形DP)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1131 [题目大意] 给出一个N个点的树,找出一个点来,以这个点为根的树时,所有点的深度 ...
- BZOJ 1131: [POI2008]Sta
Description 一棵树,问以那个节点为根时根的总和最大. Sol DFS+树形DP. 第一遍统计一下 size 和 d. 第二遍转移根,统计答案就行了. Code /************* ...
- 1131: [POI2008]Sta
1131: [POI2008]Sta Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 783 Solved: 235[Submit][Status] ...
- Bzoj 1131[POI2008]STA-Station (树形DP)
Bzoj 1131[POI2008]STA-Station (树形DP) 状态: 设\(f[i]\)为以\(i\)为根的深度之和,然后考虑从他父亲转移. 发现儿子的深度及其自己的深度\(-1\) 其余 ...
- BZOJ1131 POI2008 Sta 【树形DP】
BZOJ1131 POI2008 Sta Description 给出一个N个点的树,找出一个点来,以这个点为根的树时,所有点的深度之和最大 Input 给出一个数字N,代表有N个点.N<=10 ...
- BZOJ 4033: [HAOI2015]树上染色题解
BZOJ 4033: [HAOI2015]树上染色题解(树形dp) 标签:题解 阅读体验:https://zybuluo.com/Junlier/note/1327400 原题地址: BZOJ 403 ...
- [POI2008]Sta(树形dp)
[POI2008]Sta Description 给出一个N个点的树,找出一个点来,以这个点为根的树时,所有点的深度之和最大 Input 给出一个数字N,代表有N个点.N<=1000000 下面 ...
随机推荐
- 【大厂面试04期】讲讲一条MySQL更新语句是怎么执行的?
流程图 这是在网上找到的一张流程图,写的比较好,大家可以先看图,然后看详细阅读下面的各个步骤. 执行流程: 1.连接验证及解析 客户端与MySQL Server建立连接,发送语句给MySQL Serv ...
- linux基础相关命令
请参照以下文章 shell常用命令:https://www.cnblogs.com/pengtangtang/articles/PengTangTang_linux_base_one.html 通配符 ...
- 彻底搞懂 etcd 系列文章(二):etcd 的多种安装姿势
0 专辑概述 etcd 是云原生架构中重要的基础组件,由 CNCF 孵化托管.etcd 在微服务和 Kubernates 集群中不仅可以作为服务注册与发现,还可以作为 key-value 存储的中间件 ...
- 温故知新-多线程-深入刨析CAS
文章目录 摘要 CAS是什么? CAS是如何实现的? CAS存在的问题? 你的鼓励也是我创作的动力 Posted by 微博@Yangsc_o 原创文章,版权声明:自由转载-非商用-非衍生-保持署名 ...
- Android开源框架选择
Android开源项目推荐之「网络请求哪家强」 Android开源项目推荐之「图片加载到底哪家强」 Android网络框架的封装 Android Volley+OkHttp3+Gson(Jackson ...
- qt程序添加文件版本号
1.需要一个 *.rc 文件,用以保存相关信息.比如添加一个 app.rc 里面内容如下所示: IDI_ICON1 ICON DISCARDABLE "app.ico" ----- ...
- 2.Redis 控制短信重发
需要两个缓存 key名称 phone-busy,缓存1分钟key名称 phone-send-count,缓存1天,每成功发送一条+1 发送的时候流程如下: 判断phone-busy是否存在,存在直接报 ...
- Spyder汉化教程
汉化包下载地址:https://www.lizenghai.com/archives/523.html 1.解压汉化包 2. 3.1.运行汉化补丁PS C:\WINDOWS\system32> ...
- 使用CURL和火车头软件采集搜狐文章
直接上代码: //参数1:访问的URL,参数2:post数据(不填则为GET),参数3:提交的$cookies,参数4:是否返回$cookies function curl_request($url, ...
- pip install 执行过程中遇到的各种问题
一.pip install 安装指定版本的包 要用 pip 安装指定版本的 Python 包,只需通过 == 操作符 指定. pip install robotframework == 2.8.7 将 ...