BZOJ 1131 [POI2008] STA-Station 题解
题目
The first stage of train system reform (that has been described in the problem Railways of the third stage of 14th Polish OI.
However, one needs not be familiar with that problem in order to solve this task.) has come to an end in Byteotia. The system consists of bidirectional segments of tracks that connect railway stations. No two stations are (directly) connected by more than one segment of tracks.
Furthermore, it is known that every railway station is reachable from every other station by a unique route. This route may consist of several segments of tracks, but it never leads through one station more than once.
The second stage of the reform aims at developing train connections.
Byteasar count on your aid in this task. To make things easier, Byteasar has decided that:
one of the stations is to became a giant hub and receive the glorious name of Bitwise, for every other station a connection to Bitwise and back is to be set up, each train will travel between Bitwise and its other destination back and forth along the only possible route, stopping at each intermediate station.
It remains yet to decide which station should become Bitwise. It has been decided that the average cost of travel between two different stations should be minimal.
In Byteotia there are only one-way-one-use tickets at the modest price of bythaler, authorising the owner to travel along exactly one segment of tracks, no matter how long it is.
Thus the cost of travel between any two stations is simply the minimum number of tracks segments one has to ride along to get from one stations to the other.
Task Write a programme that:
reads the description of the train system of Byteotia, determines the station that should become Bitwise, writes out the result to the standard output.
给出一个N个点的树,找出一个点来,以这个点为根的树时,所有点的深度之和最大
输入格式
给出一个数字\(N\),代表有\(N\)个点.\(N<=1000000\) 下面\(N-1\)条边.
输出格式
输出你所找到的点,如果具有多个解,请输出编号最小的那个.
题解
随便取一个点做根,比如1号节点,然后从1号节点出发dfs每个节点,算出每棵子树的大小和每个节点的深度
然后再一次dfs,树形dp,求每个点做根时,所有点的深度之和,然后输出最大值即可.
那么转移方程怎么考虑?

这棵树从\(fa\)搜到\(root\)的时候,如何转移?
dp值的含义是所有点的深度,那么在树根从\(fa\)变成\(root\)时,所有点的深度之和怎么变化?
显然红色圈内所有点的深度+1,紫色圈内所有点深度-1
紫色圈内点数就是以\(root\)为根的子树的大小,记为\(size\),则紫色圈内点数就是总点数减去\(size\)即\(n-size\)
所以转移方程就是:
\(dp_{root} = dp_{fa} - size_{root} + (n-size_{root})
\\\ \ \ \ \ \ \ \ \ \ \ = dp_{fa} + n - 2 \times size_{root}
\)
还要注意用long long
代码
#include <cstdio>
const int maxn = 1000005;
int head[maxn], tot, n, ans, fa[maxn], size[maxn], ix, iy;
long long dp[maxn];
struct Edge { int to, next; } edges[maxn << 1];
inline int input() { int t; scanf("%d", &t); return t; }
void add(int x, int y) { edges[++tot].to = y; edges[tot].next = head[x]; head[x] = tot; }
void dfs(int root, int fa) {
size[root] = 1;
for (int x = head[root]; x; x = edges[x].next) {
if (edges[x].to == fa) continue;
dfs(edges[x].to, root);
size[root] += size[edges[x].to];
dp[root] += dp[edges[x].to] + size[edges[x].to];
}
}
void dpf(int root, int fa) {
if (root != 1) dp[root] = dp[fa] + n - size[root] * 2;
for (int x = head[root]; x; x = edges[x].next)
if (edges[x].to != fa) dpf(edges[x].to, root);
}
int main() {
n = input();
for (int i = 1; i < n; i++) add(ix = input(), iy = input()), add(iy, ix);
dfs(1, 0), dpf(1, 0);
for (int i = 1; i <= n; i++) if (dp[i] > dp[ans]) ans = i;
printf("%d\n", ans);
}
BZOJ 1131 [POI2008] STA-Station 题解的更多相关文章
- BZOJ 1131: [POI2008]Sta( dfs )
对于一棵树, 考虑root的答案向它的孩子转移, 应该是 ans[son] = (ans[root] - size[son]) + (n - size[son]). so , 先 dfs 预处理一下, ...
- bzoj 1131 [POI2008]Sta 树形dp 转移根模板题
[POI2008]Sta Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1889 Solved: 729[Submit][Status][Discu ...
- BZOJ 1131 [POI2008]Sta(树形DP)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1131 [题目大意] 给出一个N个点的树,找出一个点来,以这个点为根的树时,所有点的深度 ...
- BZOJ 1131: [POI2008]Sta
Description 一棵树,问以那个节点为根时根的总和最大. Sol DFS+树形DP. 第一遍统计一下 size 和 d. 第二遍转移根,统计答案就行了. Code /************* ...
- 1131: [POI2008]Sta
1131: [POI2008]Sta Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 783 Solved: 235[Submit][Status] ...
- Bzoj 1131[POI2008]STA-Station (树形DP)
Bzoj 1131[POI2008]STA-Station (树形DP) 状态: 设\(f[i]\)为以\(i\)为根的深度之和,然后考虑从他父亲转移. 发现儿子的深度及其自己的深度\(-1\) 其余 ...
- BZOJ1131 POI2008 Sta 【树形DP】
BZOJ1131 POI2008 Sta Description 给出一个N个点的树,找出一个点来,以这个点为根的树时,所有点的深度之和最大 Input 给出一个数字N,代表有N个点.N<=10 ...
- BZOJ 4033: [HAOI2015]树上染色题解
BZOJ 4033: [HAOI2015]树上染色题解(树形dp) 标签:题解 阅读体验:https://zybuluo.com/Junlier/note/1327400 原题地址: BZOJ 403 ...
- [POI2008]Sta(树形dp)
[POI2008]Sta Description 给出一个N个点的树,找出一个点来,以这个点为根的树时,所有点的深度之和最大 Input 给出一个数字N,代表有N个点.N<=1000000 下面 ...
随机推荐
- 阿里云杨敬宇:边缘计算行业通识与阿里云ENS的技术演进之路
近日,阿里云杨敬宇在CSDN阿里云核心技术竞争力在线峰会上进行了<5G基础设施-阿里云边缘计算的技术演进之路>主题演讲,针对5G时代下,行业和技术的趋势.边缘计算产业通识以及阿里云边缘计算 ...
- python numpy 库
引用文章:https://blog.csdn.net/xjl271314/article/details/80409034
- STL中常用算法
一.排序 sort sort(first_pointer,first_pointer+n,cmp) 默认为升序 若要使用降序,自行写cmp 函数 bool cmp(int a,int b){ retu ...
- 5.keras-Dropout剪枝操作的应用
keras-Dropout剪枝操作的应用 1.载入数据以及预处理 import numpy as np from keras.datasets import mnist from keras.util ...
- OSI七层模型及各层作用
物理层:建立.维护.断开物理连接 数据链路层:该层的作用包括了物理地址寻址,数据的成帧,流量控制,数据的检错,重发等.该层控制网络层与物理层之间的通信,解决的是所传输数据的准确性的问题.为了保证传输, ...
- jetty 启动项目在pom.xml 的配置
<build> <finalName>${artifactId}</finalName> <resources> <resource> &l ...
- VS Code项目中通过npm包的方式共享代码片段的方案实现
VS Code项目中通过npm包的方式共享代码片段的方案实现 上周在 "VS Code项目中共享自定义的代码片段方案" 的文章中提到过一个共享代码片段的方案,上周经过调研后并没有发 ...
- 透过源码看懂Flink核心框架的执行流程
前言 Flink是大数据处理领域最近很火的一个开源的分布式.高性能的流式处理框架,其对数据的处理可以达到毫秒级别.本文以一个来自官网的WordCount例子为引,全面阐述flink的核心架构及执行流程 ...
- 0.0---selenium+java自动化基础01---元素定位和操作
一.定位方法 1.通过ID定位元素:driver. findElement(By.id(value)); 2.通过元素的名称定位元素: driver. findElement(By.name( val ...
- Springboot打包放到Tomcat中报错 One or more listener fail to start
1.问题: Springboot项目直接启动不报错,打war包放到外部容器Tomcat.东方通上,在@Weblistener注解的监听器类中报错 One or more listener fail t ...