知识准备HashMap

我们平时用LinkedHashMap的时候,都会写下面这段

LinkedHashMap<String, Object> map = new LinkedHashMap<>();
map.put("student", "333");
map.put("goods", "222");
map.put("product", "222");

然后我们通常都会去看 put 方法,但是我们点到LinkedHashMap内部后,发现没有put方法,这是为什么呢?

其实这个不难,因为LinkedHashMap继承子HashMap

public class LinkedHashMap<K,V>
extends HashMap<K,V>
implements Map<K,V>
{
}

这就好理解了。因为put是集成自HashMap,那么LinkedHashMap的数据也是 数组+链表 的形式存储的吗?我们慢慢往下看

在HashMap中,put一个数据的时候,会调用一个newNode方法来创建节点,而LinkedHashMap重写了该方法

Node<K,V> newNode(int hash, K key, V value, Node<K,V> e) {
LinkedHashMapEntry<K,V> p =
new LinkedHashMapEntry<K,V>(hash, key, value, e);
linkNodeLast(p);
return p;
}

在每次创建节点的时候,都调用了一次linkNodeLast方法,来拼接链表。

tail代表链表尾巴,head代表链表脑袋

entry.before代表前驱

entry.after代表后置

private void linkNodeLast(LinkedHashMapEntry<K,V> p) {
LinkedHashMapEntry<K,V> last = tail;
tail = p;
//判断尾部是否是空的,为空就认为链表没创建,拼接在头上
if (last == null)
head = p;
else {
//在最后一个节点的before上放前一个节点
p.before = last;
//在after上放置当前节点
last.after = p;
}
}

通过这个方法,我们就对LinkedHashMap有了一个初步的了解了。before和after分别指向前驱和后置,这是典型的双向链表的结构,稍等,我去画个赋予灵魂的配图。



有了这个图就好理解多了~

当我们 put 数据的时候,除了创建节点之外,还有一个操作,就是HashMap会回调一个 afterNodeInsertion方法,我们看一下LinkedHashMap的实现

void afterNodeInsertion(boolean evict) { // possibly remove eldest
LinkedHashMapEntry<K,V> first;
if (evict && (first = head) != null && removeEldestEntry(first)) {
K key = first.key;
removeNode(hash(key), key, null, false, true);
}
}
protected boolean removeEldestEntry(Map.Entry<K,V> eldest) {
return false;
}

其实这个方法是移出最老的节点,但这段代码在jdk1.8里就不在被执行了,除非你自己集成LinkedHashMap重写removeEldestEntry方法。因为removeEldestEntry=false,OK,当我们在put数据的时候,整个双链表就建立起来了,接下来我们看下get有什么操作吧

final boolean accessOrder;
public V get(Object key) {
Node<K,V> e;
if ((e = getNode(hash(key), key)) == null)
return null;
//顺序访问模式
if (accessOrder)
afterNodeAccess(e);
return e.value;
}

LinkedHashMap的get操作首先会从 HashMap 维护的数据中通过hash获取Node,然后判断accessOrder属性,如果等于true就调用afterNodeAccess方法

那么accessOrder是个什么呢?有什么用呢?

其实accessOrder是个标记位,用来标记数据是否按照访问顺序处理,如果设置为true,那么我们每次访问数据,这个数据都会被移动到链表尾部,就会导致链表尾部的访问频次是最高的(年老的变量),链表头部是访问频次最低的(年轻的变量),这个特性正好适合做LRU缓存。如果设置为false,也就是默认的模式,那么就是按照存储顺序存储数据,访问也不会触发置尾操作。我们接下来看一下它是怎么做到的置尾吧。

首先通过这个构造方法,把accessOrder初始化成true,默认是false

public LinkedHashMap(int initialCapacity,
float loadFactor,
boolean accessOrder) {
super(initialCapacity, loadFactor);
this.accessOrder = accessOrder;
}

然后我们试一下效果

Map<String, String> map = new LinkedHashMap<>(
1 << 4, 0.75f, true
);
map.put("node1", "node1");
map.put("node2", "node1");
map.put("node3", "node1");
map.put("node4", "node1");
map.get("node1");
System.out.println(map);

{node2=node1, node3=node1, node4=node1, node1=node1}

和预期一样,访问了一次node1,它就把node1放在链表的尾巴上了,这个操作主要是在afterNodeAccess内,我们接下来看下是怎么实现的吧

void afterNodeAccess(Node<K,V> e) { // move node to last
LinkedHashMap.Entry<K,V> last;
if (accessOrder && (last = tail) != e) {
LinkedHashMap.Entry<K,V> p =
(LinkedHashMap.Entry<K,V>)e, b = p.before, a = p.after;
p.after = null;
//如果我们get的数据是表头的数据,那么表头就需要更新为表头的后置
//比如node1->node2->node3,我们获取node1的时候,node1要跑到队尾
//所以node2就是老大
if (b == null)
head = a;
else
//否则的话,把get的数据的前置节点和get的数据的后置节点连接
//比如,get node2,node2的before正是node1
//因为node2要去队尾了,所以node1就不能在绑定after为node2了,要改成node3
b.after = a;
//a等于空说明p是队尾。因为只有队尾的后置节点是空的
if (a != null)
//把操作数据的后置节点连接上操作数据的前置节点
//比如,get node2,node的after便是node3
//node3的before在没改变的时候是node2,结果node2要去队尾,所以要连接都node1去
a.before = b;
else
//a等于空说明什么?说明p的后置节点是空的。说明p可能是队尾
last = b;
//假设last等于b的时候。结果b是空的,按照规则,before为空就要成为头
if (last == null)
head = p;
else {
//把操作数据的前置节点设置成队尾,准备去队尾了。。。
p.before = last;
//把刚才队尾的后置节点,设置成刚刚操作的node2,实锤了,真的都队尾了
last.after = p;
}
//执行队尾赋值
tail = p;
++modCount;
}
}

这个方法我在啰嗦总结一下吧

1.先把操作数据的前置和后置找处理

2.然后把它前置和它后置做链接

3.把它的前置链接到之前的队尾上,再把之前的队尾的后置链接到它身上

4.最后把队尾改成操作的数据即可

最后再让我这个灵魂画手配张图吧~

最后聊一下resize吧。既然是集成自HashMap,那么肯定也是到达了扩容阀值就要扩容的

我们去找LinkedhashMap内部,发现没有重写resize,那就说明它的扩容是由父类HashMap完成的。具体的扩容过程,可以看我另一篇讲解HashMap的文章

随机推荐

  1. Spark Standalone模式伪分布式环境搭建

    前提:安装好jdk1.7,hadoop 安装步骤: 1.安装scala 下载地址:http://www.scala-lang.org/download/ 配置环境变量: export SCALA_HO ...

  2. 最大子列和CT 01-复杂度2 Maximum Subsequence Sum

    Given a sequence of K integers { N​1​​, N​2​​, ..., N​K​​ }. A continuous subsequence is defined to ...

  3. Cgroup maintainer丽泽范:解剖Linux核心容器技术

    摘要:Cgroup和namespace等内核特性如何出现,在社区处于如何的开发状况?Docker如火如荼.内核社区是否会因此加紧完好容器技术的隔离性安全性?华为Linux内核高级project师李泽帆 ...

  4. 给file_get_contents函数设置超时时间

    $opts = array( 'http'=>array( 'method'=>"GET", 'timeout'=>60, ) ); $context = str ...

  5. Broadcast发送广播

    一.知识介绍 1.[广播分类] ①有序广播:接收者A收到广播传递给B,B传给C,有序传递.任何一个环节都可以终止广播,也可以修改广播中携带的数据. 发送的方式:sendOrderedBroadcast ...

  6. Python学习day2 while循环&amp;格式化输出&amp;运算符

    day2 运算符-while循环 1.while循环 while循环基本结构; while 条件:      结果    # 如果条件为真,那么循环则执行    # 如果条件为假,那么循环不执行 de ...

  7. ZooKeeper 典型的应用场景——及编程实现

    如何使用 Zookeeper 作为一个分布式的服务框架,主要用来解决分布式集群中应用系统的一致性问题,它能提供基于类似于文件系统的目录节点树方式的数据存储,但是 Zookeeper 并不是用来专门存储 ...

  8. Sublime Text 2 破解 on Mac

    用Sublime Text 2自己打开自己的二进制文件:Sublime Text 2/Contents/MacOS/Sublime Text 2 搜索所有3342 3032 都替换成3242 3032 ...

  9. php内存管理机制与垃圾回收机制

    PHP内存管理机制 1 var_dump(memory_get_usage()); //获取内存 2 $a = "laruence"; //定义一个变量 3 var_dump(me ...

  10. 03-树2 List Leaves (25 分)

    Given a tree, you are supposed to list all the leaves in the order of top down, and left to right. I ...