Go--关于 goroutine、channel
Go--关于 goroutine、channel
goroutine
协程是一种轻量化的线程,由Go编译器进行优化。
Go协程具有以下特点:
- 有独立的栈空间
- 共享程序堆中的空间
- 调度由用户控制
如果主线程main函数(主 goroutine或者main goroutine)返回或者退出时,即使所有协程(goroutine)还没执行完毕,也会退出。当然,协程可以在主线程未退出之前自己执行完毕,并退出。
- 主线程是一个物理线程,直接作用在
cpu上。是重量级的,非常耗费cpu资源。 - 协程从主线程开启的,是轻量级的线程,是逻辑态的。对资源要求相对较小。
Golang可以开启成千上万个协程。这是Golang的并发优势。
MPG模式



Go1.8后,默认让程序运行在多个核上,可以不用设置了Go1.8前,还是要设置一下,可以更高效的利益cpu
numsCPU :=runtime.NumCPU() //获取系统CPU数
runtime.GOMAXPROCS(numsCPU) //设置运行的CPU数目
channel
在此之前,先说明一种实现同步的方式:加锁(注意这里说的指互斥锁)
需求:计算n!:
var lock sync.Mutex //使用全局变量加锁
func testInput(n int) {
res := 1
for i := 1; i <= n; i++ {
res *= i
}
lock.Lock()
myMap[n] = uint64(res)
lock.Unlock()
}
func main() {
for i := 1; i <= 50; i++ {
go testInput(i)
}
time.Sleep(time.Second *5) //不等待会提前结束计算,未计算的线程将被退出
lock.Lock()
for i,v := range myMap {
fmt.Println("map[",i,"]=",v)
}
lock.Unlock()
}
通过加互斥锁(同步锁)的方式,并发进行运算、添加,但是这种方式也有缺点:
- 前面使用全局变量加锁同步来解决
goroutine的通讯,但不完美 - 主线程在等待所有
goroutine全部完成的时间很难确定,我们这里设置 5 秒,仅仅是估算。 - 如果主线程休眠时间长了,会加长等待时间,如果等待时间短了,可能还有
goroutine处于工作状态,这时也会随主线程的退出而销毁。 - 通过全局变量加锁同步来实现通讯,也并不利用多个协程对全局变量的读写操作。
还可以用channel来解决:
func add(s []int , c chan int) {
sum := 0
for _, v := range s {
sum += v
fmt.Println(v)
}
c <- sum
}
func main() {
c := make(chan int)
s :=[]int{2,5,9,23,7,3,4}
go add(s[:len(s)/2 ] ,c) //写channel操作会阻塞,直到读channel操作执行
go add( s[len(s)/2:] ,c)
x ,y:= <-c ,<-c //随机并发
fmt.Println(x ,y ,x+y)
}
信道是带有类型的管道,你可以通过它用信道操作符 <- 来发送或者接收值。
ch <- v // 将 v 发送至信道 ch。
v := <-ch // 从 ch 接收值并赋予 v。
(“箭头”就是数据流的方向。)
和映射与切片一样,信道在使用前必须创建:
ch := make(chan int)
默认情况下,发送和接收操作在另一端准备好之前都会阻塞。这使得 Go 程可以在没有显式的锁或竞态变量的情况下进行同步。
channel是线程安全的;channel本质是队列,遵循先进先出;channel中只能存放指定的数据类型;channel的数据放满后,就不能再放入;如果从
channel取出数据后,可以继续放入;在没有使用协程的情况下,如果
channel数据取完了,再取,就会报deadlock。
还可以放进任意类型(interface{})的数据:
package main
import "fmt"
type Student struct {
Name string `json:"name"` // 是 ` ` (tab键上的~按键) ,不是 ' '
Sex string `json:"sex"`
}
func main() {
allChan := make(chan interface{},5)
stu1 := Student{Name: "lili",Sex: "f"}
stu2 := Student{Name: "chang",Sex: "m"}
stu3 := Student{Name: "ling",Sex: "m"}
allChan <- stu1
allChan <- 10
allChan <- stu2
allChan <- 99.5
allChan <- stu3
<- allChan
<- allChan
stuRes := <- allChan
fmt.Println(stuRes)
//读取结构体类型数据字段,需要先进行类型断言
stu := stuRes.(Student)
fmt.Println(stu.Name)
fmt.Println(stu.Sex)
}
由于channel是interface{}类型,所以使用的时候,都需要先进行类型断言。
allChan <- myMap
<- allChan
<- allChan
stuMap := <- allChan
stus := stuMap.(map[int]Student)
fmt.Println(stus)
fmt.Println(stus[0])
fmt.Println(stus[1])

allChan <- stu1
allChan <- 10
allChan <- stu2
allChan <- 99.5
allChan <- stu3
<- allChan
n := <- allChan
n += 1 //报错

不使用类型断言,直接使用将会报错。因为编译器并不认识此类型,需要经过类型断言进行确认。
channel的关闭
channel关闭使用 close(chan),关闭channel。
关闭后不能再向channel发送数据,只能从channel读取数据。
在上面的例子中的<-allChan前加入以下代码:
close(allChan)

channel的遍历
遍历channel之前需要关闭channel,否则会报错(deadlock)。

关闭channel后,即可正常进行遍历channel,知道遍历完成,退出遍历。
close(allChan)
for v := range allChan {
fmt.Println(v)
}
只读、只写 channel
- 只读
channel:(例如)
var chan1 <-chan int
- 只写
channel:(例如)
var chan2 chan<- int
案例:
func send(ch chan<- int,exit chan struct{}) {
for i := 0; i < 10; i++ {
ch <- i
fmt.Println("输入",i)
}
close(ch)
var a struct{}
exit <- a
}
func get(ch <-chan int,exit chan struct{}) {
for i := 0; i < 10; i++ {
v,ok := <-ch
if !ok {
break
}
fmt.Println("输出",v)
}
var a struct{}
exit <- a
}
func main() {
ch := make(chan int ,10) //双向通道
exitChan := make(chan struct{} ,2)
go send(ch,exitChan)
go get(ch,exitChan)
for {
if len(exitChan) == 2 {
break
}
}
}

可以使用for+select语句防止阻塞:
func main() {
ch := make(chan int ,10)
for i := 0; i < 5; i++ {
ch <- i
}
ch2 := make(chan float64 ,10)
for i := 0; i < 5; i++ {
ch2 <- rand.Float64()
}
label:
for {
select {
case n:= <-ch:
fmt.Println(n)
time.Sleep(time.Second)
case m:=<-ch2:
fmt.Println(m)
time.Sleep(time.Second)
default:
fmt.Println("没了")
time.Sleep(time.Second)
//return 直接结束退出程序运行
break label //中断指定的 for 循环
}
}
}

使用defer+recover解决运行时协程中抛出的panic,保证程序继续运行:
func wrong() {
defer func(){
if e := recover() ; e != nil {
fmt.Print("func wrong()计算错误,")
fmt.Println("异常",e)
}
}()
num := 0
num1 := 100
num = num1 /num
fmt.Println("func wrong()计算正确",num)
}
func right() {
defer func(){
if e := recover() ; e != nil {
fmt.Println(e)
}
}()
num := 10
num1 := 100
num = num1 /num
fmt.Println("func right() 计算正确",num)
}
func main() {
go wrong()
go right()
for i := 0; i < 5; i++ {
time.Sleep(time.Second)
i++
}
}

关于recover:
内建函数recover允许程序管理恐慌过程中的Go程。在defer的函数中,执行recover调用会取回传至panic调用的错误值,恢复正常执行,停止恐慌过程。若recover在defer的函数之外被调用,它将不会停止恐慌过程序列。在此情况下,或当该Go程不在恐慌过程中时,或提供给panic的实参为nil时,recover就会返回nil。
Go--关于 goroutine、channel的更多相关文章
- Go语言学习笔记(七)杀手锏 Goroutine + Channel
加 Golang学习 QQ群共同学习进步成家立业工作 ^-^ 群号:96933959 Goroutine Go语言的主要的功能在于令人简易使用的并行设计,这个方法叫做Goroutine,通过Gorou ...
- 使用goroutine+channel和java多线程+queue队列的方式开发各有什么优缺点?
我感觉很多项目使用java或者c的多线程库+线程安全的queue数据结构基本上可以实现goroutine+channel开发能达到的需求,所以请问一下为什么说golang更适合并发服务端的开发呢?使用 ...
- 【转】关于 Goroutine Channel Select 的用法和理解
原文:https://blog.csdn.net/jfkidear/article/details/88661693 ----------------------------------------- ...
- 一个Golang例子:for + goroutine + channel
Rob Pike 在 Google I/O 2012 - Go Concurrency Patterns 里演示了一个例子(daisy chain). 视频地址:https://www.youtube ...
- golang并发编程goroutine+channel(一)
go语言的设计初衷除了在不影响程序性能的情况下减少复杂度,另一个目的是在当今互联网大量运算下,如何让程序的并发性能和代码可读性达到极致.go语言的并发关键词 "go" go dos ...
- go14--并发concurrency,Goroutine ,channel
package main /** 并发concurrency 很多人都是冲着 Go 大肆宣扬的高并发而忍不住跃跃欲试,但其实从 源码的解析来看,goroutine 只是由官方实现的超级“线程池”而已. ...
- goroutine,channel
Go语言中有个概念叫做goroutine, 这类似我们熟知的线程,但是更轻. 以下的程序,我们串行地去执行两次loop函数: package main import "fmt" f ...
- go语言之行--golang核武器goroutine调度原理、channel详解
一.goroutine简介 goroutine是go语言中最为NB的设计,也是其魅力所在,goroutine的本质是协程,是实现并行计算的核心.goroutine使用方式非常的简单,只需使用go关键字 ...
- [GO语言的并发之道] Goroutine调度原理&Channel详解
并发(并行),一直以来都是一个编程语言里的核心主题之一,也是被开发者关注最多的话题:Go语言作为一个出道以来就自带 『高并发』光环的富二代编程语言,它的并发(并行)编程肯定是值得开发者去探究的,而Go ...
- Go学习——go+channel实战(转)
转载:http://studygolang.com/articles/2423 背景 在最近开发的项目中,后端需要编写许多提供HTTP接口的API,另外技术选型相对宽松,因此选择Golang + Be ...
随机推荐
- redis过期策略以及内存淘汰机制(理论+配置)
一.redis的过期策略: redis的过期策略是:定期删除+惰性删除redis在存储数据时,可能会设置过期时间,而所谓的定期删除,指的是redis默认是每隔100ms就随机抽取一些设置了过期时间的k ...
- java安全编码指南之:敏感类的拷贝
目录 简介 一个简单的SensitiveObject SensitiveObject的限制 对SensitiveObject的攻击 解决办法 简介 一般来说class中如果包含了私有的或者敏感的数据的 ...
- @ComponentScan比较
ComponetScan 定义扫描规则 value:指定要扫描的包 excludeFilters=Filter[] 指定扫描的时候按照什么规则排除哪些组件. includeFilters=Filter ...
- Redis 作者 Antirez 与 Contributor Mattsta 之间关于 CRC 的 Battle
大家好,我是 yes. 昨天表弟说有个学妹问他 Redis 为什么要用 CRC16(key) mod 16384 来计算 key 所处槽的位置,我想这 CRC 一般都是用来校验的,通过多项式转换成二进 ...
- 在 Kubernetes 上部署 OpenStack 是什么体验
红蓝出 CP,OpenStack 和 Kubernetes 在一起会怎样? 背景 从去年开始就想深入地学习 Kubernetes,首先想到是在 OpenStack 上能比较轻松地玩转,所以去 尝试了 ...
- Spring学习(四)--Spring的IOC
1.BeaDefinition的Resource定位 (1)直接使用BeanDefinitionFactory 定义一个Resource来定位容器使用的BeanDefinition. Resource ...
- Book of Shaders 00 - 使用 VS Code 编写 GLSL
0x00 写在前面 最近在学习由 Patricio 编写的 The Book of Shaders,这是一本关于 Fragment Shaders(片段着色器)的入门指南.为了在一个相对熟悉的平台运行 ...
- 使用free掉的内存的危害
1 源码 #include <stdio.h> #include <stdlib.h> // 编译环境 gcc int main(void) { printf("** ...
- 03 以Hello World为例,分析C语言的最小的程序结构
C程序主要包含的部分 预处理器指令 函数 变量 语句 & 表达式 注释 C Hello World 实例 如下程序,可以在屏幕输出短句"Hello World" #incl ...
- fopen和fopen_s的区别
转载:https://blog.csdn.net/keith_bb/article/details/50063075 fopen: 原型:FILE * fopen(const char * path, ...