对Series 对象使用匿名函数
使用 pipe 函数对 Series 对象使用 匿名函数
pd.Series(range(5)).pipe(lambda x,y,z :(x**y)%z,2,5) pd.Series(range(5)).pipe(lambda x:x+3).pipe(lambda x:x*3)
使用 apply 函数对 Series 对象使用 匿名函数
pd.Series(range(5)).apply(lambda x:x+3) # 查看无偏标准差,使用 sem 函数
pd.Series(range(0,5)).sem() # 按照日 进行分组查看交易的平均值 -1 表示倒数第一个
# data.groupby(data.日期.str.__getitem__(-1)).mean().apply(round) # 查看日期尾数为 1 的数据
# data[data.日期.str.endswith('1')][:12] # 查看日期尾数为 12 的交易数据,slice 为切片 (-2) 表示倒数两个
# data[data.日期.str.slice(-2) == '12'] # 查看日期中月份或天数包含 2 的交易数据
# data[data.日期.str.slice(-5).str.contains('2')][1:9] # 对姓名和日期进行分组,并进行求和
dff = dataframe.groupby(by = ['姓名','日期'],as_index = False).sum() # 使用 pivot 进行设置透视表
# 将 dff 的索引,列 设置成透视表形式
dff = dff.pivot(index = '姓名',columns = '日期',values = '交易额')
index 设置行索引
columns 设置列索引
values 对应的值 # 查看第一天的数据
dff.iloc[:,:1] # 显示前两天每一天的交易总额以及每个人的交易金额
dataframe.pivot_table(values = '交易额',index = '姓名',columns = '日期',aggfunc = 'sum',margins = True).iloc[:,:2] # 查看每个人每天购买的次数
dataframe.pivot_table(values = '交易额',index = '姓名',columns = '日期',aggfunc = 'count',margins = True) # 每个人每天去过几次柜台,使用交叉表 crosstab
pd.crosstab(dataframe.姓名,dataframe.柜台) # 每个人在每个柜台交易额的平均值,金额/天数
pd.crosstab(dataframe.姓名,dataframe.柜台,dataframe.交易额,aggfunc = 'mean').apply(lambda num:round(num,2) ) # 对 5 的余数进行分组
by 可以为匿名函数,字典,字符串
dataframe.groupby(by = lambda num:num % 5)['交易额'].sum()
dataframe.groupby(by = {7:'索引为7的行',15:'索引为15的行'})['交易额'].sum()
dataframe.groupby(by = '时段')['交易额'].sum() # sort_values() 进行排序 # 查看交易额对应的排名
data['排名'] = data['交易额'].rank(ascending = False) # 每个人不同时段的交易额
dataframe.groupby(by = ['姓名','时段'])['交易额'].sum() # 查看上浮了 50% 之后依旧低于 1500 的交易额,查看 4 条数据
# 对 DataFrame 对象使用 map 匹配函数
dataframe.loc[dataframe.交易额 < 1500,'交易额'] = dataframe[dataframe.交易额 < 1500]['交易额'].map(lambda num:num*1.5) # 丢弃缺失值之后的行数
len(dataframe.dropna()) # 包含缺失值的行
dataframe[dataframe['交易额'].isnull()] # 使用整体均值的 80% 填充缺失值
# dataframe.fillna({'交易额':round(dataframe['交易额'].mean() * 0.8)},inplace = True)
# dataframe.iloc[[1,4,16],:] # 重复值
dataframe[dataframe.duplicated()] # 丢弃重复行
dataframe = dataframe.drop_duplicates() # 查看是否有录入错误的工号和姓名
dff = dataframe[['工号','姓名']]
dff.drop_duplicates() # 使用 diff 对数据进行差分
# 查看员工业绩波动情况(每一天和昨天的数据作比较)
dff = dataframe.groupby(by = '日期').sum()['交易额'].diff() # 使用交叉表得到每人在各柜台交易额的平均值
data_group = pd.crosstab(data.姓名,data.柜台,data.交易额,aggfunc = 'mean').apply(round) # 使用 concat 连接两个相同结构的 DataFrame 对象
df3 = pd.concat([df1,df2]) # 合并 merge 、 join
# 按照工号进行合并,随机查看 3 条数据
# 合并 df4 和 df5 两个DataFrame 对象
rows = np.random.randint(0,len(df5),3)
pd.merge(df4,df5).iloc[rows,:] # 按照工号进行合并,指定其他同名列的后缀
# on 对应索引列名 suffixes 区分两个连接的对象
pd.merge(df1,df2,on = '工号',suffixes = ['_x','_y']).iloc[:,:] # 两个表都设置工号为索引 set_index,设置两个连接对象的索引
df2.set_index('工号').join(df3.set_index('工号'),lsuffix = '_x',rsuffix = '_y').iloc[:] # 读取 csv 对象时使用 usecols
# 读取工号姓名时段交易额,使用默认索引
dataframe = pd.read_excel(r'C:\Users\lenovo\Desktop\总结\Python\超市营业额.xlsx',
usecols = ['工号','姓名','时段','交易额','柜台']) # 按照交易额降序和工号升序排序,查看五条数据
dataframe.sort_values(by = ['交易额','工号'],ascending = [False,True])[:5] # 按工号升序排序
dataframe.sort_values(by = ['工号'])[:5] # 三分钟重采样,计算均值
data.resample('3H').mean() # 计算OHLC open,high,low,close
data.resample('5H').ohlc() # 将日期替换为第二天
data.index = data.index + pd.Timedelta('1D') # 查看指定日期的年份是否是闰年
pd.Timestamp('').is_leap_year # 查看所有的交易额信息
dataframe['交易额'].describe() # 第一个最小交易额的行下标
index = dataframe['交易额'].idxmin() # 最大交易额的行下标
index = dataframe['交易额'].idxmax()
dataframe.loc[index,'交易额']
# # 跳过 1 2 4 行,以第一列姓名为索引
dataframe2 = pd.read_excel(r'C:\Users\lenovo\Desktop\总结\Python\超市营业额.xlsx',
skiprows = [1,2,4],
index_col = 1)
skiprows 跳过的行
index_col 指定的列 dataframe.iloc[[0,2,3],:] # 查看第四行的姓名数据
dataframe.at[3,'姓名']

2020-05-07

pandas_学习的时候总会忘了的知识点的更多相关文章

  1. 个人 WPF+EF(DBFirst) 简单应用开发习惯及EF学习测试(备忘) -- 2

    接上篇:个人 WPF+EF(DBFirst) 简单应用开发习惯及EF学习测试(备忘) -- 1 Step1 在主程序中设置连接数据库 从Model类库的 App.Config 把数据库字符串拷贝出来, ...

  2. IOS学习笔记48--一些常见的IOS知识点+面试题

      IOS学习笔记48--一些常见的IOS知识点+面试题   1.堆和栈什么区别? 答:管理方式:对于栈来讲,是由编译器自动管理,无需我们手工控制:对于堆来说,释放工作由程序员控制,容易产生memor ...

  3. 关于图计算&图学习的基础知识概览:前置知识点学习(Paddle Graph Learning (PGL))

    关于图计算&图学习的基础知识概览:前置知识点学习(Paddle Graph Learning (PGL)) 欢迎fork本项目原始链接:关于图计算&图学习的基础知识概览:前置知识点学习 ...

  4. sqlserver -- 学习笔记(一)自定义函数(学习总结,备忘)

    SQL Server自定义函数,以前只在书上看过,没有动手去敲一敲,今天刚好接触到,看了几篇博文学习了下.做好备忘很重要!! (@_@)Y Learn from:http://www.cnblogs. ...

  5. NodeJs学习记录(一)初步学习,杂乱备忘

    2016/12/26 星期一 1.在win7下安装了NodeJs 1)进入官网 https://nodejs.org/en/download/,下载对应的安装包,我目前下载的是node-v6.2.0- ...

  6. Python学习(五):易忘知识点

    1.列表比较函数cmp >>> a = [1,2,3,4] >>> b = [1,2,3,4,5] >>> c = [1,2,3,4] >& ...

  7. MySQL的一些操作(学习记录_备忘)

    有个问题一直困扰着我,就是在windows下,使用命令行登录mymql时,得cd进mysql的\bin目录下.但我已经将mysql的\bin加入了环境变量,似乎不起作用. mysql 不允许创建表名全 ...

  8. Django框架学习易错和易忘点

    一.get在几处的用法 1.获取前端数据 request.POST.get('xxx') #当存在多个值时,默认取列表最后一个元素:所以当存在多个值时,使用getlist 2.获取数据库数据 mode ...

  9. jmeter__编写脚本学习笔记、备忘

    web持续添加 前言: 1. token就是令牌,比如你授权(登录)一个程序时,他就是个依据,判断你是否已经授权该软件:也叫关联 2. cookie就是写在客户端的一个txt文件,里面包括你登录信息之 ...

随机推荐

  1. 每日一题 - 剑指 Offer 43. 1~n整数中1出现的次数

    题目信息 时间: 2019-07-01 题目链接:Leetcode tag: 整除 取余 规律 递归 难易程度:中等 题目描述: 输入一个整数 n ,求1-n这n个整数的十进制表示中1出现的次数. 例 ...

  2. postman设置页面详解

    设置详解/General Trim keys and values in request body:如果使用form-data或者url-encoded的方式向服务器发送数据:将该选项设置为ON,则会 ...

  3. day80 前端项目

    目录 一.初始化项目 二.安装路由vue-router 1 配置路由 1.1 初始化路由对象 1.2 注册路由信息 1.3 在视图中显示路由对应的内容 2 路由对象提供的操作 2.1 页面跳转 2.2 ...

  4. Navigation Nightmare POJ - 1984

    Navigation Nightmare Farmer John's pastoral neighborhood has N farms (2 <= N <= 40,000), usual ...

  5. Django适当进阶篇

    本节内容 学员管理系统练习 Django ORM操作进阶 用户认证 Django练习小项目:学员管理系统设计开发 带着项目需求学习是最有趣和效率最高的,今天就来基于下面的需求来继续学习Django 项 ...

  6. Shaderlab-10chapter-立方体纹理、玻璃效果

    10.1.1天空盒子 window - Lighting - skyMaterial 创建mat,shader选自带的6 side shader 确保相机选skybox 如果某个相机需要覆盖,添加sk ...

  7. 三、Python系列——Pandas数据库读取数据

    Pandas主要先读取表格类型的数据,然后进行分析. import pandas as pd# 由于是用pandas模块操作数据,因此不用在路径前加open,否则就是python直接打开文件,可能还会 ...

  8. someone you loved 歌词翻译

    I'm going under and this time I fear there's no one to save me 我要放弃了,这一次我怕没有人可以拯救我. This all or noth ...

  9. 史上最全的 jmeter 获取 jdbc 数据使用的4种方法——(软件测试Python自动化)

    周五,下班了吗?软件测试人. 明天是周末了!给大家推荐一个技术干货好文.史上最全的 jmeter 获取 jdbc 数据使用的四种方法.我也精剪了jmeter的自动化接口测试的视频放在了同名UP主,周末 ...

  10. CSS栅格布局

    CSS栅格布局 认识栅格布局 CSS的栅格布局也被称为网格布局(Grid Layout),它是一种新兴的布局方式. 栅格布局是一个二维系统,这意味着它可以同时处理列和行,与弹性布局相似,栅格系统也是由 ...