在各种伪距定位算法中,最小二乘法是一种比较简单而广泛的方法,该算法可以分为以下几步:

1、准备数据与设置初始值

这里准备数据,主要是对于各颗可见卫星,收集到它们在同一时刻的伪距测量值,计算测量值的各项偏差、误差成分的校正量,然后计算出误差校正后的伪距测量值,这里假设伪距为理想距离加上随机高斯误差。设置初始值,假设大概知道位置坐标,则设定其为初始值,也可根据上一次定位结果设定;若什么都不了解,那么初值设置为0,只不过多几次迭代过程罢了。

2、非线性方程组线性化(不详细解释,就是得到雅克比矩阵)。

3、求解线性方程组,此处运用最小二乘法。

4、更新非线性方程组的根

5、判断牛顿迭代的收敛性,用定位结果的二范数是否小于定位精度为判定标准。

贴出伪距定位算法的MATLAB代码:

1、主函数dingwei_main.m

 %伪距定位算法(多星)
%2014.7.23
%距离单位为km
%----------------------------begin-----------------------------------------
clear;clc;
c=299792.458; %光速 %通过星历参数解算到所在地可见卫星的坐标位置
sat13=[-7134.529244 16113.648836 23709.205570];
sat22=[-22383.700040 18533.233168 5307.245613];
sat23=[-5384.901317 28971.622323 2079.796362];
sat14=[637.466571 28016.053841 9347.297933];
sat12=[-11568.199533 -3328.511543 26977.312423];
sat21=[-28908.916747 -577.061760 6051.375658];
sat5=[-1205.651181 28296.890128 -8397.025036];
sat4=[16456.527324 12347.282494 21199.173063]; sat=[sat13;sat22;sat23; sat14; sat12; sat21; sat5; sat4];%多卫星位置矩阵
%所在地实际大地坐标,用来与定位结果作比较
nanjing=[-2604.298533 4743.297217 3364.978513];
%理想伪距测量值
r0 = zeros(8,1);
for i = 1:8
r0(i,1)=norm(sat(i,:)-nanjing);
end
%加入零均值,方差为80的随机高斯分布,模拟含有误差的伪距r
r = r0 + sqrt(80)*randn(size(r0))*1e-3;
%--------------------------------------------------------------------------
%Newton迭代法
%设定迭代初值,若无法估计则全部假设为0
xyzt=[0 0 0 0]; for i = 1:100 % 最大迭代次数设为100次
f = dingwei_fun(xyzt,sat,r);
df = dingwei_dfun(xyzt,sat); %左除,具有良好的数值稳定性,在MATLAB中此已经为最小二乘意义下的解
%delta(xyzt)=G^(-1)*b
delta=-df\f;
xyzt(1)=xyzt(1)+delta(1);
xyzt(2)=xyzt(2)+delta(2);
xyzt(3)=xyzt(3)+delta(3);
xyzt(4)=xyzt(4)+delta(4); p=norm(delta); %定位精度
if (p<1e-10)
break;
end
end disp('迭代次数为')
i
disp('用户位置为')
xyzt(1:3)
disp('用户钟差为')
xyzt(4)
%--------------------------------end---------------------------------------

2、非线性方程组dingwei_fun.m

 function f=dingwei_fun(xyzt,sat,r)
%多卫星定位方程函数
%xyzt(1:3)为用户位置(km)
%xyzt(4)为用户钟差(s)
%r为测量得到的伪距(km)
%sat为卫星数据
c=299792.458; %光速 [m,n]=size(sat);
for i=1:m
f(i)=norm(sat(i,:)-xyzt(1:3))+c*xyzt(4)-r(i);
end
f=f';

3、方程组偏导数矩阵

 %多颗卫星定位的偏导数矩阵
function df=dingwei_dfun(xyzt,sat)
%xyzt为用户位置及钟差
%sat为卫星数据
c=299792.458; %光速 [m,n]=size(sat);
xyz=xyzt(1:3);
for i=1:m
for j=1:3
df(i,j)=(xyz(j)-sat(i,j))/norm(sat(i,:)-xyz(j));
end
end
df(:,4)=c; %线性函数ct,对t求偏导为c

伪距定位算法(matlab版)的更多相关文章

  1. 《数字图像处理原理与实践(MATLAB版)》一书之代码Part6

    本文系<数字图像处理原理与实践(MATLAB版)>一书之代码系列的Part6,辑录该书第281至第374页之代码,供有须要读者下载研究使用.代码运行结果请參见原书配图,建议下载代码前阅读下 ...

  2. 关于APIT定位算法的讨论

    关于APIT定位算法的讨论 [摘要]   无线传感器网络节点定位机制的研究中,基于距离无关的定位技术得到快速发展,其中基于重叠区域的APIT定位技术在实际环境中的定位精度高,被广泛研究和应用. [关键 ...

  3. KMP算法-Python版

                               KMP算法-Python版 传统法: 从左到右一个个匹配,如果这个过程中有某个字符不匹配,就跳回去,将模式串向右移动一位.这有什么难的? 我们可以 ...

  4. 数字图像处理原理与实践(MATLAB版)勘误表

    本文系<数字图像处理原理与实践(MATLAB版)>一书的勘误表. [内容简单介绍]本书全面系统地介绍了数字图像处理技术的理论与方法,内容涉及几何变换.灰度变换.图像增强.图像切割.图像去噪 ...

  5. Trilateration三边测量定位算法

    转载自Jiaxing / 2014年2月22日 基本原理 Trilateration(三边测量)是一种常用的定位算法: 已知三点位置 (x1, y1), (x2, y2), (x3, y3) 已知未知 ...

  6. 《数字图像处理原理与实践(MATLAB版)》一书之代码Part2

    本文系<数字图像处理原理与实践(MATLAB版)>一书之代码系列的Part2(P43~80),代码运行结果请參见原书配图,建议下载代码前阅读下文: 关于<数字图像处理原理与实践(MA ...

  7. 《数字图像处理原理与实践(MATLAB版)》一书之代码Part1

    本文系<数字图像处理原理与实践(MATLAB版)>一书之代码系列的Part1(P1~42).代码运行结果请參见原书配图. P20 I = imread('lena.jpg');BW1 = ...

  8. 《数字图像处理原理与实践(MATLAB版)》一书之代码Part5

    <数字图像处理原理与实践(MATLAB版)>一书之代码Part5 本文系<数字图像处理原理与实践(MATLAB版)>一书之代码系列的Part5.辑录该书第225至第280页之代 ...

  9. [CLPR] 定位算法探幽 - 边缘和形态学

    一. 引言 如何从一副图片中找到车牌? 这是机器视觉的一个应用. 理所当然地, 思考的角度是从车牌本身的信息入手, 为了讨论方便, 下面均以长窄型蓝白车牌为例. 下图就是这样一张车牌的基本信息. 一眼 ...

随机推荐

  1. Spring的第一个程序

    目录 一.Spring概述 1. Spring是什么? 2. IOC控制反转 二.Spring的第一个程序 1. 创建Maven项目 2. 加入maven依赖pom.xml 3. 定义接口和实体类 4 ...

  2. C#-用Winform制作一个简单的密码管理工具

    为什么要做? 首先是为了练习一下c#. 想必大家都有过记不起某个平台的账号密码的经历,那种感受着实令人抓狂.那这么多账号密码根本记不住!我之前用python写过一个超级简单(连账号信息都写在代码里那种 ...

  3. 冷饭新炒:理解Snowflake算法的实现原理

    前提 Snowflake(雪花)是Twitter开源的高性能ID生成算法(服务). 上图是Snowflake的Github仓库,master分支中的REAEMDE文件中提示:初始版本于2010年发布, ...

  4. P、NP、NPC问题详解

    转载地址 https://blog.csdn.net/bcb5202/article/details/51202589 P.NP.NPC 概念 > P问题:能够在多项式时间内解决的决策问题. - ...

  5. LeetCode 64最小路径和

    题目 给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小. 说明:每次只能向下或者向右移动一步. 示例: 输入: [   [1,3,1], [1,5 ...

  6. Window C盘 占满原因之一

    最近一段时间,突然C盘 莫名奇妙的满了 ,也没有中毒. 最后查找是因为安装了SQL Reporting  的原因 C:\Program Files\Microsoft SQL Server Repor ...

  7. vue2和vue3的区别

    一.常用命令 vue -V 查看本地 vue 版本 二.官方文档 3.0:https://cli.vuejs.org/zh/ 三.创建文件 3.0:vue create 进入工程文件夹,创建项目. 2 ...

  8. CSS3动画旋转——(图片360°旋转)

    今天在重构网页特效的时候,想着用到一个css3的旋转特效.简单来一个demo. html <div class="box"> <img src="./y ...

  9. 初期web渗透的学习路线

    成长路线 信息安全 前端安全 web安全 基础,书籍推荐 <网站入侵与脚本攻防修炼> 什么是web漏洞 什么是sql注入漏洞 什么是数据库 什么是文件上传漏洞 什么是跨站脚本攻击 < ...

  10. vue2.0从头开发项目管理系统

    1.自己的github建一个项目. 2.本地vue2.0项目初始化. 安装node.js,检查node版(node -v). 安装webpack(npm install webpack -g),检查w ...