https://datawhalechina.github.io/pms50/#/chapter10/chapter10

如果您想根据单个指标查看项目的变化情况,并可视化此差异的顺序和数量,那么散型条形图 (Diverging Bars) 是一个很好的工具。

它有助于快速区分数据中组的性能,并且非常直观,并且可以立即传达这一点。

导入所需要的库

import numpy as np              # 导入numpy库
import pandas as pd # 导入pandas库
import matplotlib as mpl # 导入matplotlib库
import matplotlib.pyplot as plt
import seaborn as sns # 导入seaborn库

设定图像各种属性

large = 22; med = 16; small = 12

params = {'axes.titlesize': large,    # 设置子图上的标题字体
'legend.fontsize': med, # 设置图例的字体
'figure.figsize': (16, 10), # 设置图像的画布
'axes.labelsize': med, # 设置标签的字体
'xtick.labelsize': med, # 设置x轴上的标尺的字体
'ytick.labelsize': med, # 设置整个画布的标题字体
'figure.titlesize': large}
#plt.rcParams.update(params) # 更新默认属性
plt.style.use('seaborn-whitegrid') # 设定整体风格
sns.set_style("white") # 设定整体背景风格

程序代码

# step1:导入数据

df = pd.read_csv("https://github.com/selva86/datasets/raw/master/mtcars.csv")
x = df.loc[:, 'mpg'] # 获取mpg这一列数据
# z-score 标准化(正太标准化):将数据按期属性(按列进行)减去其均值,并处以其方差。得到的结果是,对于每个属性/每列来说所有数据都聚集在0附近,方差为1。
df['mpg_z'] = (x - x.mean()) / x.std()
# 列表推导式
# 小于0__红色,大于0__绿色
df['colors'] = ['red' if x <0 else 'green' for x in df['mpg_z']] # 颜色标签
df.sort_values('mpg_z', inplace = True) # 对'mpg_z这一列数据进行排序
df.reset_index(inplace = True) # 对排序后的数据重置索引

# step2:绘制发散条形图

    # 画布
plt.figure(figsize = (14, 10), # 画布尺寸_(14, 10)
dpi = 80) # 分辨率__80
# 发散条形图
plt.hlines(df.index, # 将y下标作为绘制直线的位置
xmin = 0, # 每一行的开头
xmax = df.mpg_z, # 每一行的结尾
colors = df.colors, # 颜色,默认为'k'(黑色)
alpha = 0.4, # 色彩饱和度
linewidth = 5) # 线宽

# step3:装饰图像

    # x,y轴的标题
plt.gca().set(ylabel='$Model$', xlabel='$Mileage$') # 获取当前子图,若没有子图则创建一个子图,并设置横, 纵坐标的名称
# y轴标签
plt.yticks(df.index, # 放置刻度的位置列表
df.cars, # 放置给定位置列表的标签列表
fontsize = 12) # 字体尺寸
plt.title('Diverging Bars of Car Mileage', fontdict={'size':20}) # 设置图像标题
# 设置网格线
plt.grid(linestyle = '--', # 网格线类型
alpha = 0.5) # 透明度 plt.show() # 显示图像

博文总结

matplotlib.pyplot.hlines()

matplotlib.pyplot.hlines(y, xmin, xmax, colors='k', linestyles='solid', label='', \*, data=None, \*\*kwargs)

Plot horizontal lines at each y from xmin to xmax.

Parameters:
yscalar or sequence of scalar

y-indexes where to plot the lines.

xmin, xmaxscalar or 1D array-like

Respective beginning and end of each line. If scalars are provided, all lines will have same length.

colorsarray-like of colors, optional, default: 'k'
linestyles{'solid', 'dashed', 'dashdot', 'dotted'}, optional
labelstr, optional, default: ''
Returns:
linesLineCollection
Other Parameters:
**kwargsLineCollection properties.

数据可视化实例(十二): 发散型条形图 (matplotlib,pandas)的更多相关文章

  1. 数据可视化实例(三): 散点图(pandas,matplotlib,numpy)

    关联 (Correlation) 关联图表用于可视化2个或更多变量之间的关系. 也就是说,一个变量如何相对于另一个变化. 散点图(Scatter plot) 散点图是用于研究两个变量之间关系的经典的和 ...

  2. 数据可视化实例(十三): 发散型文本 (matplotlib,pandas)

    偏差 (Deviation) https://datawhalechina.github.io/pms50/#/chapter11/chapter11 发散型文本 (Diverging Texts) ...

  3. C语言库函数大全及应用实例十二

    原文:C语言库函数大全及应用实例十二                                          [编程资料]C语言库函数大全及应用实例十二 函数名: setrgbpalette ...

  4. 【Matplotlib】数据可视化实例分析

    数据可视化实例分析 作者:白宁超 2017年7月19日09:09:07 摘要:数据可视化主要旨在借助于图形化手段,清晰有效地传达与沟通信息.但是,这并不就意味着数据可视化就一定因为要实现其功能用途而令 ...

  5. 数据可视化实例(十四):带标记的发散型棒棒糖图 (matplotlib,pandas)

    偏差 (Deviation) 带标记的发散型棒棒糖图 (Diverging Lollipop Chart with Markers) 带标记的棒棒糖图通过强调您想要引起注意的任何重要数据点并在图表中适 ...

  6. 数据可视化实例(十): 相关图(matplotlib,pandas)

    相关图 https://datawhalechina.github.io/pms50/#/chapter8/chapter8 导入所需要的库 import numpy as np # 导入numpy库 ...

  7. HTML5大数据可视化效果(二)可交互地铁线路图

    前言 最近特别忙,承蒙大伙关照,3D机房的项目一个接着一个,领了一帮小弟,搞搞传帮带,乌飞兔走,转眼已经菊黄蟹肥……有个小弟很不错,勤奋好学,很快就把API都摸透了,自己折腾着做了个HTML5的魔都的 ...

  8. 数据可视化实例(十六):有序条形图(matplotlib,pandas)

    排序 (Ranking) 棒棒糖图 (Lollipop Chart) 棒棒糖图表以一种视觉上令人愉悦的方式提供与有序条形图类似的目的. https://datawhalechina.github.io ...

  9. 数据可视化实例(十五):有序条形图(matplotlib,pandas)

    偏差 (Deviation) 有序条形图 (Ordered Bar Chart) 有序条形图有效地传达了项目的排名顺序. 但是,在图表上方添加度量标准的值,用户可以从图表本身获取精确信息. https ...

随机推荐

  1. 一张图搞懂Ubuntu安装时姓名、计算机名、用户名

    安装Ubuntu时会要求填写如下图的信息: 感谢:苏守坤 注意:上面的博客讲述了各自的具体含义,本篇博客只是说明这些名称在系统安装后会出现的位置.

  2. Java——选择、冒泡排序、折半查找

    //选择排序对数据进行升序排序 public static void selectSortArray(int[] arr){ for(int i = 0; i<arr.length-1;i++) ...

  3. 2019-02-08 Python学习之Scrapy的简单了解

    今天遇到的问题和昨天差不多,一个Scrapy装了好久,anaconda卸了又装,pycharm卸了又装,环境变量配置一堆,依赖包下载一堆.查了一堆资料总算是搞好了. Scripy: 先放个框架结构图( ...

  4. springboot整合Mybatis(有xml)

    pom.xml <!-- mybatis 支持 SpringBoot --> <dependency> <groupId>org.mybatis.spring.bo ...

  5. [搬运]Intellij IDEA 汉化

    Github地址: https://github.com/pingfangx/TranslatorX

  6. DNS bind使用

    概念介绍 DNS的分类 主DNS:配置管理,不提供服务,只用来编辑配置信息,给从DNS提供同步数据 从DNS:从主DNS上同步数据信息,对外提供服务 缓存DNS:在主DNS和从DNS之间,用来递归解析 ...

  7. 手摸手带你理解Vue响应式原理

    前言 响应式原理作为 Vue 的核心,使用数据劫持实现数据驱动视图.在面试中是经常考查的知识点,也是面试加分项. 本文将会循序渐进的解析响应式原理的工作流程,主要以下面结构进行: 分析主要成员,了解它 ...

  8. 并发编程-CPU执行volatile原理探讨-可见性与原子性的深入理解

    volatile的定义 Java语言规范第3版中对volatile的定义如下:Java编程语言允许线程访问共享变量,为了确保共享变量能被准确和一致地更新,线程应该确保通过排他锁单独获得这个变量.Jav ...

  9. linux 上设置mysql开机自启

    此方式是通过安装包安装的,如果是yum安装的rpm包,可参考yum安装MySQL8.0 三个月之前安装的mysql,记得是设置了开机自启,但是今天再次进入的时候发现,无法登录,报错如下 原因是mysq ...

  10. 3、尚硅谷_SSM高级整合_创建Maven项目.avi

    Maven中dependencyManagement作用说明 在Maven多模块的时候,管理依赖关系是非常重要的,各种依赖包冲突,查询问题起来非常复杂,于是就用到了<dependencyMana ...