题解-CF429C Guess the Tree
题面
给一个长度为 \(n\) 的数组 \(a_i\),问是否有一棵树,每个节点要么是叶子要么至少有两个儿子,而且 \(i\) 号点的子树大小是 \(a_i\)。
数据范围:\(1\le n\le 24\)。
题解
发现 \(n\) 很小,想到可以状压。
设叶子节点有 \(ln\) 个,所以中间节点有 \(mn=n-ln\) 个。
由于“每个节点要么是叶子要么至少有两个儿子”,所以 \(ln\ge\lceil\frac n2\rceil\),\(mn\le n-\lceil\frac n2\rceil \le 11\)。
所以可以先特判 \(2mn\ge n\) 的情况答案为 NO
。
然后剩下的可以 dp
,设 \(f_{t,s,i}\):
\(t\) 表示是一棵森林还是一个子树(为了对付“每个节点要么是叶子要么至少有两个儿子”,如果是子树 \(t=0\),否则 \(t=1\))。
\(s\) 表示包含的中间节点集合,\(s< 2^{mn}\le 2048\)。
\(i\) 表示包含的叶子节点个树,因为叶子节点都是一样的,所以这样可以优化状压。
值表示是否存在这样的森林,如果存在 \(=1\),否则 \(=0\)。
考虑怎么转移:
一棵森林(子树)和另一棵森林(子树)合并成新的森林。
一棵森林上面加一个 \(a=\) 森林大小 \(+1\) 的节点成为一棵子树(怎么求一棵森林的大小?其实就是 \({\rm popcount}(s)+i\) 啦)。
然后就剩初始化的问题了,因为 \(i\) 这维就像一个背包,而且因为 \(s\) 这一维保证不会有重点,所以可以在 dp
中用无限背包的方式,这样就只需要初始化 \(f_{0,0,1}=1\) 了。
时间复杂度 \(\Theta(ln^2 3^{mn})\),细节看代码。
代码
#include <bits/stdc++.h>
using namespace std;
//Start
typedef long long ll;
typedef double db;
#define mp(a,b) make_pair((a),(b))
#define x first
#define y second
#define bg begin()
#define ed end()
#define sz(a) int((a).size())
#define pb(a) push_back(a)
#define R(i,a,b) for(int i=(a),i##E=(b);i<i##E;i++)
#define L(i,a,b) for(int i=(b)-1,i##E=(a)-1;i>i##E;i--)
const int iinf=0x3f3f3f3f;
const ll linf=0x3f3f3f3f3f3f3f3f;
//Data
const int N=24,mN=11;
int n,sn,ln,mn,a[N],b[1<<mN];
int f[2][1<<mN][N+1]; // 森林还是子树,中间节点集,叶子节点数
bool get(int s,int i){ // 返回 f[1][s][i] 的值
for(int su=s;su;su=s&(su-1))if(!(su&(s^su)))R(j,0,i+1)
if((f[0][su][j]||f[1][su][j])&&(f[0][s^su][i-j]||f[1][s^su][i-j])) return true;
R(j,0,i+1)if((f[0][0][j]||f[1][0][j])&&(f[0][s][i-j]||f[1][s][i-j])) return true; // 因为 su!=0,补上循环中缺少的 su=0
return false;
}
//Main
int main(){
ios::sync_with_stdio(0);
cin.tie(0),cout.tie(0);
cin>>n; R(i,0,n) cin>>a[i]; sort(a,a+n,greater<int>());
R(i,0,n)if(a[i]>1) mn++; ln=n-mn,sn=1<<mn,sort(a,a+mn);
if(mn*2>=n) cout<<"NO\n",exit(0);
R(i,1,sn) b[i]=b[i>>1]+(i&1);
f[0][0][1]=true;
R(s,0,sn)R(i,0,ln+1)if(get(s,i)){
f[1][s][i]=true;
R(t,0,mn)if(!(s&(1<<t))&&a[t]==b[s]+i+1) // 加新的 a= 森林大小+1 的节点形成子树
f[0][s^(1<<t)][i]=true;
}
if(f[0][sn-1][ln]) cout<<"YES\n";
else cout<<"NO\n";
return 0;
}
祝大家学习愉快!
题解-CF429C Guess the Tree的更多相关文章
- 题解:CF593D Happy Tree Party
题解:CF593D Happy Tree Party Description Bogdan has a birthday today and mom gave him a tree consistin ...
- 题解-AtCoder Code-Festival2017 Final-J Tree MST
Problem \(\mathrm{Code~Festival~2017~Final~J}\) 题意概要:一棵 \(n\) 个节点有点权边权的树.构建一张完全图,对于任意一对点 \((x,y)\),连 ...
- PAT甲题题解-1110. Complete Binary Tree (25)-(判断是否为完全二叉树)
题意:判断一个节点为n的二叉树是否为完全二叉树.Yes输出完全二叉树的最后一个节点,No输出根节点. 建树,然后分别将该树与节点树为n的二叉树相比较,统计对应的节点个数,如果为n,则为完全二叉树,否则 ...
- [LeetCode 题解]: Validate Binary Search Tree
Given a binary tree, determine if it is a valid binary search tree (BST). Assume a BST is defined as ...
- leetcode题解:Construct Binary Tree from Inorder and Postorder Traversal(根据中序和后序遍历构造二叉树)
题目: Given inorder and postorder traversal of a tree, construct the binary tree. Note:You may assume ...
- 题解 CF383C 【Propagating tree】
这道题明明没有省选难度啊,为什么就成紫题了QAQ 另:在CF上A了但是洛谷Remote Judge玄学爆零. 思路是DFS序+线段树. 首先这道题直观上可以对于每一次修改用DFS暴力O(n),然后对于 ...
- 题解 [CF916E] Jamie and Tree
题面 解析 这题考试时刚了四个小时. 结果还是爆零了 主要就是因为\(lca\)找伪了. 我们先考虑没有操作1,那就是裸的线段树. 在换了根以后,主要就是\(lca\)不好找(分类讨论伪了). 我们将 ...
- 题解 【HEOI2016】tree树
题面 解析 其实这题可以考虑离线做法,用并查集解决. 因为仔细想,添加标记并不方便, 但如果用并查集记录下祖先, 再一一删除,就会方便很多. 先把每次操作记录下来, 同时记录下每个点被标记的次数(因为 ...
- 题解-hzy loves segment tree I
Problem 题目概要:给定一棵 \(n\) 个节点的树,点有点权,进行 \(m\) 次路径取\(\max\)的操作,最后统一输出点权 \(n\leq 10^5,m\leq 5\times 10^6 ...
随机推荐
- SSH2中的笔记
1.web后端实质就是对表的添.删.查.改: 第一步:对系统进行分析,然后构思. 第二步:画出E-R图,设计出表或写出相应的实体类. 第三步:按照最简单的思想去设计的话,一个action-->一 ...
- Linxu (centos6.8)常见目录及文件解析
/etc/sysconfig/networ-scripts/ifcfg-eth0 第一块网卡配置 BOOTPROTO="dhcp" #启用地址协议,static静态协议,bo ...
- python的pip快速安装代码
pip install xx,经常由于网速,或者安装版本问题导致安装速度慢超时等问题, 现提供一个py镜像安装代码,安装库文件前执行下这个程序,可以很快下载 cmd 进入命令提示符 python .p ...
- Jrebel & Xrebel 在线激活方法 (亲测可用)
一开始用eclipse的时候虽然这是一个狂吃内存的家伙,但是调试代码是真的舒服,修改过的代码可以不用重启热加载,后来转idea,虽然idea很完美但是也有不足的地方,比如代码调试就不能热加载. 还好有 ...
- C++深拷贝与浅拷贝区别
浅拷贝只是对指针的拷贝,浅拷贝后两个指针指向同一个内存空间: 深拷贝不仅对指针进行拷贝,而且对指针指向的内容进行拷贝,经深拷贝后的指针是指向两个不同地址的指针. 当对一个已知对象进行拷贝时,编译系统会 ...
- ABAP CDS-介绍(ABAP CDS视图)
前言 文章翻译自Tushar Sharma的文章,转载请注明原作者和译者! 在SAP发展到SAP HANA版本之后,SAP内部的技术正在快速地变化,SAP开发业务应用程序的方式已经发生了范式转变(根本 ...
- Vegas教程分享,制作古装墨迹笔刷开场效果
许多酷炫的古装大片,片头曲介绍人物的时候,都有一种墨迹笔刷的开场效果,那么这个特效如何利用Vegas去做呢? 1.导入素材文件 首先呢,导入相关文件素材到视频制作软件Vegas中,点击页面上方如图1箭 ...
- guitar pro系列教程(十六):Guitar Pro如何编辑琵音
上一章节我们讲了播放没有声音的解决,本章节我们通过图文结合的方式为大家讲解使用Guitar Pro如何来编辑琵音,有兴趣的朋友可以一起来学习哦. 首先我们要先搞明白什么事吉他的琵音. 其实吉他琶音就是 ...
- canvas 元素覆盖&穿透问题
给网站添加canvas动态背景.完后发现有a标签无法点击,想到是canvas覆盖了(但有些是可以的).网上查找,有解决穿透的问题,但canvas的鼠标事件会无效.后发现是定位问题. canvas样式 ...
- MacOS Big Sur11.0升级后Eclipse启动报错
本次升级MacOS Big Sur11.0.1之后,开启Eclipse时报空指针,打开页面空白,之后卸掉, 再次安装时提示加载不到libserver.dylib 或 Could not create ...