题面

CF1139D Steps to One

一个数列,每次随机选一个 \([1,m]\) 之间的数加在数列末尾,数列中所有数的 \(\gcd=1\) 时停止,求期望长度 \(\bmod 10^9+7\)。

数据范围:\(1\le m\le 10^5\)。


蒟蒻语

这题的非 dp 做法讲得太玄了而且写题解的人貌似不屑于解释,于是蒟蒻来写一篇。

(其实是 ubuntu 剪贴板炸了没得记录题目了只好写题解了)。


蒟蒻解

先推一波概率期望式(\(E(x)\) 是 \(x\) 的期望,\(P(x)\) 是 \(x\) 事件的概率)。

\[\begin{split}
E(len)=&\sum_{i\ge 1}P(len=i)\cdot i\\
=&\sum_{i\ge 1}P(len=i)\sum_{j=1}^i\\
=&\sum_{j\ge 1}\sum_{i\ge j}P(len=i)\\
=&\sum_{i\ge 1}P(len\ge i)\\
=&1+\sum_{i\ge 1}P(len>i)\\
\end{split}
\]

因为 \(\gcd_{i=1}^{len} a_i=1\) 就结束了,所以:

\[\begin{split}
P(len>i)=&P\left(\left(\gcd_{j=1}^{i} a_i\right)>1\right)\\
=&1-P\left(\left(\gcd_{j=1}^{i} a_i\right)=1\right)\\
=&1-\frac{\sum_{a_1=1}^m\sum_{a_2=1}^m\cdots\sum_{a_i=1}^m\epsilon\left(\left(\gcd_{j=1}^{i} a_i\right)\right)}{m^i}\\
=&^{\color{#aa88cc}{(1)}}1-\frac{\sum_{a_1=1}^m\sum_{a_2=1}^m\cdots\sum_{a_i=1}^m\sum_{d|\left(\gcd_{j=1}^{i} a_i\right)}\mu(d)}{m^i}\\
=&1-\frac{\sum_{d=1}^m\mu(d)\sum_{a_1=1}^m[d|a_1]\sum_{a_2=1}^m[d|a_2]\cdots\sum_{a_i=1}^m[d|a_i]}{m^i}\\
=&1-\frac{\sum_{d=1}^m\mu(d)\left(\lfloor\frac{m}{d}\rfloor\right)^i}{m^i}\\
=&^{\color{#eeaa22}{(2)}}-\frac{\sum_{d=2}^m\mu(d)\left(\lfloor\frac{m}{d}\rfloor\right)^i}{m^i}\\
\end{split}
\]

\(\color{#aa88cc}{(1)}\) 就是一个莫反,\(\color{#eeaa22}{(2)}\) 就是把 \(d=1\) 的值和 \(1\) 抵消掉。

带回上式:

\[\begin{split}
E(len)=&1+\sum_{i\ge 1}P(len>i)\\
=&1-\sum_{i\ge 1}\frac{\sum_{d=2}^m\mu(d)\left(\lfloor\frac{m}{d}\rfloor\right)^i}{m^i}\\
=&1-\sum_{i\ge 1}\frac{1}{m^i}\sum_{d=2}^m\mu(d)\left(\lfloor\frac{m}{d}\rfloor\right)^i\\
=&1-\sum_{d=2}^m\mu(d)\sum_{i\ge 1}\left(\frac{\lfloor\frac{m}{d}\rfloor}{m}\right)^i\\
=&^{\color{#ff2211}{(3)}}1-\sum_{d=2}^m\mu(d)\frac{\lfloor\frac{m}{d}\rfloor}{m-\lfloor\frac{m}{d}\rfloor}\\
\end{split}
\]

\(\color{#ff2211}{(3)}\) 是无穷等比数列求值:

\[s=x+x^2+x^3+\cdots\\
sx=x^2+x^3+x^4+\cdots\\
s-sx=x\\
s=\frac{x}{1-x}\\
\]

然后就可以筛个 \(\mu(i)\) 就可以 \(\Theta(m)\) 地算了,当然您可以杜教到 \(\Theta(m^{\frac 23})\),但是那么秀有什么意思呢……


代码

#include <bits/stdc++.h>
using namespace std; //Start
typedef long long ll;
typedef double db;
#define mp(a,b) make_pair((a),(b))
#define x first
#define y second
#define be(a) (a).begin()
#define en(a) (a).end()
#define sz(a) int((a).size())
#define pb(a) push_back(a)
#define R(i,a,b) for(int i=(a),I=(b);i<I;i++)
#define L(i,a,b) for(int i=(a),I=(b);i>I;i--)
const int iinf=0x3f3f3f3f;
const ll linf=0x3f3f3f3f3f3f3f3f; //Data
const int mod=1e9+7; //Sieve
struct sieve{
int n;
vector<bool> np;
vector<int> prime,mu,inv;
void Sieve(){
np[1]=true,mu[1]=1;
R(i,2,n){
if(!np[i]) prime.pb(i),mu[i]=-1;
for(int p:prime){
if(!(i*p<n)) break;
np[i*p]=true;
if(i%p==0){mu[i*p]=0;break;}
mu[i*p]=mu[i]*mu[p];
}
}
inv[1]=1;
R(i,2,n) inv[i]=1ll*(mod-mod/i)*inv[mod%i]%mod;
}
sieve(int _n){
n=_n,np.assign(n,false),inv.resize(n);
prime.clear(),mu.resize(n),Sieve();
}
}; //Main
int main(){
ios::sync_with_stdio(0);
cin.tie(0),cout.tie(0);
int n; cin>>n;
sieve math(n+1);
int ans=1;
R(i,2,n+1) (ans+=mod-1ll*(mod+math.mu[i])%mod
*(n/i)%mod*math.inv[n-n/i]%mod)%=mod;
cout<<ans<<'\n';
return 0;
}

祝大家学习愉快!

题解-CF1139D Steps to One的更多相关文章

  1. CF1139D Steps to One 题解【莫比乌斯反演】【枚举】【DP】

    反演套 DP 的好题(不用反演貌似也能做 Description Vivek initially has an empty array \(a\) and some integer constant ...

  2. CF1139D Steps to One

    题目链接:洛谷 这个公式可真是个好东西.(哪位大佬知道它叫什么名字的?) 如果$X$恒$\geq 0$,那么 $$E[X]=\int_0^{+\infty}P(X>t)dt$$ 呸,我什么都没写 ...

  3. cf1139D. Steps to One(dp)

    题意 题目链接 从\([1, M]\)中随机选数,问使得所有数gcd=1的期望步数 Sol 一个很显然的思路是设\(f[i]\)表示当前数为\(i\),期望的操作轮数,转移的时候直接枚举gcd \(f ...

  4. CF1139D Steps to One(DP,莫比乌斯反演,质因数分解)

    stm这是div2的D题……我要对不住我这个紫名了…… 题目链接:CF原网  洛谷 题目大意:有个一开始为空的序列.每次操作会往序列最后加一个 $1$ 到 $m$ 的随机整数.当整个序列的 $\gcd ...

  5. CF1139D Steps to One (莫比乌斯反演 期望dp)

    \[ f[1] = 0 \] \[ f[i] = 1 + \frac{1}{m} \sum_{j = 1} ^ n f[gcd(i, j)] \ \ \ \ \ \ (i != 1) \] 然后发现后 ...

  6. 【期望dp 质因数分解】cf1139D. Steps to One

    有一种组合方向的考虑有没有dalao肯高抬啊? 题目大意 有一个初始为空的数组$a$,按照以下的流程进行操作: 在$1\cdots m$中等概率选出一个数$x$并添加到$a$的末尾 如果$a$中所有元 ...

  7. 【CF1139D】Steps to One(动态规划)

    [CF1139D]Steps to One(动态规划) 题面 CF 你有一个数组,每次随机加入一个\([1,n]\)的数,当所有数\(gcd\)为\(1\)时停止,求数组长度的期望. 题解 设\(f[ ...

  8. poj1399 hoj1037 Direct Visibility 题解 (宽搜)

    http://poj.org/problem?id=1399 http://acm.hit.edu.cn/hoj/problem/view?id=1037 题意: 在一个最多200*200的minec ...

  9. 【题解】【数组】【查找】【Leetcode】Search in Rotated Sorted Array

    Suppose a sorted array is rotated at some pivot unknown to you beforehand. (i.e., 0 1 2 4 5 6 7 migh ...

随机推荐

  1. Flink处理函数实战之二:ProcessFunction类

    欢迎访问我的GitHub https://github.com/zq2599/blog_demos 内容:所有原创文章分类汇总及配套源码,涉及Java.Docker.Kubernetes.DevOPS ...

  2. ClickHouse数据库数据定义手记之数据类型

    前提 前边一篇文章详细分析了如何在Windows10系统下搭建ClickHouse的开发环境,接着需要详细学习一下此数据库的数据定义,包括数据类型.DDL和DML.ClickHouse作为一款完备的D ...

  3. C# 9 record 并非简单属性 POCO 的语法糖

    C# 9 record 并非简单属性 POCO 的语法糖 最近升级专案到大统一 .NET 5 并使用 C#9 语法尝试改写套件,发现之前以为 record 只是简单属性 POCO 的简化语法糖的认知是 ...

  4. 「LOJ 538」「LibreOJ NOIP Round #1」数列递推

    description sosusosu 虐爆 OI 之后成为了一名文化课选手.一天,他做作业碰到了一堆数列问题,每道题给出的数列都是以下形式: 给定一个下标从\(0\)开始,无限长的整数列\({a_ ...

  5. 【PUPPETEER】初探之获取元素文本值(三)

    一.知识点 page.$eval(selector, pageFunction[, ...args]) page.$$eval(selector, pageFunction[, ...args]) i ...

  6. eslint报错: Unexpected any value in conditional. An explicit comparison or type cast is required

    原代码: record.modifiedTime? 修改后代码:typeof record.modifiedTime !== 'undefined' ?   (isAddType === true ? ...

  7. python3 Redis未授权检测脚本

    `import sys import getopt import socket def get_target(): opts, args = getopt.getopt(sys.argv[1:], ' ...

  8. 好端端的数据结构,为什么叫它SB树呢?

    大家好,今天给大家介绍一个很厉害的数据结构,它的名字就很厉害,叫SB树,业内大佬往往叫做傻叉树.这个真不是我框你们,而是它的英文缩写就叫SBT. SBT其实是英文Size balanced tree的 ...

  9. 【模版 Luogu P3808/P3796/P5357】AC自动机(简论)

    浙江集训Day9,没有出任何实质性成果,只好把昨天打完的板子记一下. 该博客基于luogu的三道模版题.只有一个大致的讲解,主要提供代码给自己参考. ------------------------- ...

  10. shardingsphere与分布式事务

    rt https://blog.csdn.net/l1028386804/article/details/79769043 https://blog.csdn.net/qq_20387013/arti ...