POJ 1129 Channel Allocation

Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 14191   Accepted: 7229

Description

When a radio station is broadcasting over a very large area, repeaters are used to retransmit the signal so that every receiver has a strong signal. However, the channels used by each repeater must be carefully chosen so that nearby repeaters do not interfere with one another. This condition is satisfied if adjacent repeaters use different channels.

Since the radio frequency spectrum is a precious resource, the number of channels required by a given network of repeaters should be minimised. You have to write a program that reads in a description of a repeater network and determines the minimum number of channels required.

Input

The input consists of a number of maps of repeater networks. Each map begins with a line containing the number of repeaters. This is between 1 and 26, and the repeaters are referred to by consecutive upper-case letters of the alphabet starting with A. For example, ten repeaters would have the names A,B,C,...,I and J. A network with zero repeaters indicates the end of input.

Following the number of repeaters is a list of adjacency relationships. Each line has the form:

A:BCDH

which indicates that the repeaters B, C, D and H are adjacent to the repeater A. The first line describes those adjacent to repeater A, the second those adjacent to B, and so on for all of the repeaters. If a repeater is not adjacent to any other, its line has the form

A:

The repeaters are listed in alphabetical order.

Note that the adjacency is a symmetric relationship; if A is adjacent to B, then B is necessarily adjacent to A. Also, since the repeaters lie in a plane, the graph formed by connecting adjacent repeaters does not have any line segments that cross.

Output

For each map (except the final one with no repeaters), print a line containing the minumum number of channels needed so that no adjacent channels interfere. The sample output shows the format of this line. Take care that channels is in the singular form when only one channel is required.

Sample Input

2
A:
B:
4
A:BC
B:ACD
C:ABD
D:BC
4
A:BCD
B:ACD
C:ABD
D:ABC
0

Sample Output

1 channel needed.
3 channels needed.
4 channels needed.
 /*-------------超时代码---------------*/
/*
一开始我直接用的dfs没有剪枝,就是dfs每一个点,枚举每一个频道,找到不相邻,就向下dfs,再加上回溯,每次复杂度是n^3,再加上题目询问的数据量有点大,就超时了。*/
/*--------------------------*/
#include<iostream>
using namespace std;
#include<cstdio>
#include<cstring>
#define N 30
struct Edge{
int v,last;
}edge[N*N];
int head[N];
int sum=(<<)-,n,t=;
int flag[N],pd[N];
bool bb=false;
inline void add_edge(int u,int v)
{
++t;
edge[t].v=v;
edge[t].last=head[u];
head[u]=t;
}
inline void input()
{
char s[N];
for(int i=;i<=n;++i)
{
scanf("%s",s+);
int len=strlen(s+);
for(int j=;j<=len;++j)
add_edge(s[]-'A'+,s[j]-'A'+);
}
}
inline void dfs(int k)
{
if(k==n+)
{
int ans=;
for(int j=;j<=n;++j)
if(flag[j]) ans++;
sum=min(ans,sum);
return;
}
for(int i=;i<=n;++i)
{
int biaozhi=true;
for(int l=head[k];l;l=edge[l].last)
{
if(pd[edge[l].v]==i)
{
biaozhi=false;
break;
}
}
if(!biaozhi) continue;
pd[k]=i;
flag[i]++;
dfs(k+);
flag[i]--;
pd[k]=;
} }
int main()
{
while(scanf("%d",&n)==)
{
if(n==) break;
input();
dfs();
printf("%d channels needed.\n",sum);
memset(edge,,sizeof(edge));
memset(head,,sizeof(head));
sum=(<<)-;t=;bb=false;
memset(flag,,sizeof(flag));
}
return ;
}
 /*-------------对于上面那个代码-----------------*/
特殊数据: A:B
B:
C:
D:
E:
F:
G:
H:
I:
用上面的代码来处理这个非常稀疏的图时间是很长的,因为for(i-->n)枚举频道中的if语句几乎始终成立,那么dfs的复杂度就到了n^n的增长速度,当n==8时,已经1.*^8多了,自然会超时,所以必须改为迭代加深搜索。限定搜索的深度,实际上是不会到n的
 /*改成迭代加深搜索之后,速度果然快了许多。
还有一个值得注意的地方:当sum是1的时候,channel是单数形式,其他时候是复数形式(英语不好被坑了)
*/
#include<iostream>
using namespace std;
#include<cstdio>
#include<cstring>
#define N 30
struct Edge{
int v,last;
}edge[N*N];
int head[N];
bool vis[N][N]={false};
int sum=(<<)-,n,t=;
int pd[N];
bool flag=false;
inline void add_edge(int u,int v)
{
if(vis[u][v]||vis[v][u]) return ;
vis[u][v]=true;vis[v][u]=true;
++t;
edge[t].v=v;
edge[t].last=head[u];
head[u]=t;
++t;
edge[t].v=u;
edge[t].last=head[v];
head[v]=t;
}
inline void input()
{
char s[N];
for(int i=;i<=n;++i)
{
scanf("%s",s+);
int len=strlen(s+);
for(int j=;j<=len;++j)
add_edge(s[]-'A'+,s[j]-'A'+);
}
}
inline void dfs(int k,int minn)
{
if(k==n+)
{
flag=true;
return;
}
for(int i=;i<=minn;++i)
{
bool biaozhi=true;
for(int l=head[k];l;l=edge[l].last)
{
if(pd[edge[l].v]==i)
{
biaozhi=false;
break;
}
}
if(!biaozhi) continue;
pd[k]=i;
dfs(k+,minn);
if(flag) return;
pd[k]=;
} }
int main()
{
while(scanf("%d",&n)==)
{
if(n==) break;
input();
for(int i=;i<=n;++i)
{
dfs(,i);
if(flag)
{
sum=i;
memset(pd,,sizeof(pd));
break;
}else memset(pd,,sizeof(pd));
}
if(sum>)
printf("%d channels needed.\n",sum);
else printf("%d channel needed.\n",sum);
memset(edge,,sizeof(edge));
memset(head,,sizeof(head));
sum=(<<)-;t=;
memset(vis,false,sizeof(vis));
flag=false;
}
return ;
}

迭代加深搜索 POJ 1129 Channel Allocation的更多相关文章

  1. POJ 1129 Channel Allocation(DFS)

    Channel Allocation Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 13173   Accepted: 67 ...

  2. POJ 1129 Channel Allocation DFS 回溯

    Channel Allocation Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 15546   Accepted: 78 ...

  3. poj 1129 Channel Allocation ( dfs )

    题目:http://poj.org/problem?id=1129 题意:求最小m,使平面图能染成m色,相邻两块不同色由四色定理可知顶点最多需要4种颜色即可.我们于是从1开始试到3即可. #inclu ...

  4. POJ 1129 Channel Allocation 四色定理dfs

    题目: http://poj.org/problem?id=1129 开始没读懂题,看discuss的做法,都是循环枚举的,很麻烦.然后我就决定dfs,调试了半天终于0ms A了. #include ...

  5. poj 1129 Channel Allocation

    http://poj.org/problem?id=1129 import java.util.*; import java.math.*; public class Main { public st ...

  6. poj 1129 Channel Allocation(图着色,DFS)

    题意: N个中继站,相邻的中继站频道不得相同,问最少需要几个频道. 输入输出: Sample Input 2 A: B: 4 A:BC B:ACD C:ABD D:BC 4 A:BCD B:ACD C ...

  7. 迭代加深搜索POJ 3134 Power Calculus

    题意:输入正整数n(1<=n<=1000),问最少需要几次乘除法可以从x得到x的n次方,计算过程中x的指数要求是正的. 题解:这道题,他的结果是由1经过n次加减得到的,所以最先想到的就是暴 ...

  8. POJ1129Channel Allocation[迭代加深搜索 四色定理]

    Channel Allocation Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 14601   Accepted: 74 ...

  9. poj 2248 Addition Chains (迭代加深搜索)

    [题目描述] An addition chain for n is an integer sequence with the following four properties: a0 = 1 am ...

随机推荐

  1. LeetCode131:Palindrome Partitioning

    题目: Given a string s, partition s such that every substring of the partition is a palindrome. Return ...

  2. java war run

    #!/bin/bashdate=`date +'%Y%m%d %T'`pid=`ps -ef |grep Credit | grep -v grep|awk '{print $2}'`damocles ...

  3. 【OpenCV】选择ROI区域

    问题描述:在测试目标跟踪算法时,需要选择不同区域作为目标,进行目标跟踪,测试目标跟踪的效果. 解决思路: 1.OpenCV中提供了鼠标交互控制,利用setMouseCallback()给固定的窗口设置 ...

  4. redis3.0 集群实战3 - java编程实战

    本文主要描述使用jedis进行redis-cluster操作   jedis jedis是redis官方推荐使用的java redis客户端,github地址为,https://github.com/ ...

  5. mysql 5.6到percona 5.6小版本升级

    假设原来是mysql 5.6.19社区版,现在要升级到percona server 5.6.30. 对于大的数据库来说,采用mysqldump方式进行迁移太花费时间了,可采用新安装加载原来数据库的方式 ...

  6. Android详细的对话框AlertDialog.Builder使用方法

      我们在平时做开发的时候,免不了会用到各种各样的对话框,相信有过其他平台开发经验的朋友都会知道,大部分的平台都只提供了几个最简单的实现,如果我们想实现自己特定需求的对话框,大家可能首先会想到,通过继 ...

  7. 基于流的自动化构建工具------gulp (简单配置)

    项目上线也有一阵子,回头过来看了看从最初的项目配置到开发的过程,总有些感慨,疲软期,正好花点时间,看看最初的配置情况 随着前端的发展,前端工程化慢慢成为业内的主流方式,项目开发的各种构建工具,也出现了 ...

  8. gulp入坑系列(2)——初试JS代码合并与压缩

    在上一篇里成功安装了gulp到项目中,现在来测试一下gulp的合并与压缩功能 gulp入坑系列(1)--安装gulp(传送门):http://www.cnblogs.com/YuuyaRin/p/61 ...

  9. HTML 块元素

    分为3类 1. 结构块 只能包含块级元素.它们包含结构含义,但没有语义含义,也就是,不能说明内容是什么,只能说明其组织方式. <ol> <ul> <dl> < ...

  10. copy 和 strong(或retain)的区别

    http://stackoverflow.com/questions/18526909/whether-i-should-use-propertynonatomic-copy-or-propertyn ...