迭代加深搜索 POJ 1129 Channel Allocation
POJ 1129 Channel Allocation
| Time Limit: 1000MS | Memory Limit: 10000K | |
| Total Submissions: 14191 | Accepted: 7229 |
Description
Since the radio frequency spectrum is a precious resource, the number of channels required by a given network of repeaters should be minimised. You have to write a program that reads in a description of a repeater network and determines the minimum number of channels required.
Input
Following the number of repeaters is a list of adjacency relationships. Each line has the form:
A:BCDH
which indicates that the repeaters B, C, D and H are adjacent to the repeater A. The first line describes those adjacent to repeater A, the second those adjacent to B, and so on for all of the repeaters. If a repeater is not adjacent to any other, its line has the form
A:
The repeaters are listed in alphabetical order.
Note that the adjacency is a symmetric relationship; if A is adjacent to B, then B is necessarily adjacent to A. Also, since the repeaters lie in a plane, the graph formed by connecting adjacent repeaters does not have any line segments that cross.
Output
Sample Input
2
A:
B:
4
A:BC
B:ACD
C:ABD
D:BC
4
A:BCD
B:ACD
C:ABD
D:ABC
0
Sample Output
1 channel needed.
3 channels needed.
4 channels needed.
/*-------------超时代码---------------*/
/*
一开始我直接用的dfs没有剪枝,就是dfs每一个点,枚举每一个频道,找到不相邻,就向下dfs,再加上回溯,每次复杂度是n^3,再加上题目询问的数据量有点大,就超时了。*/
/*--------------------------*/
#include<iostream>
using namespace std;
#include<cstdio>
#include<cstring>
#define N 30
struct Edge{
int v,last;
}edge[N*N];
int head[N];
int sum=(<<)-,n,t=;
int flag[N],pd[N];
bool bb=false;
inline void add_edge(int u,int v)
{
++t;
edge[t].v=v;
edge[t].last=head[u];
head[u]=t;
}
inline void input()
{
char s[N];
for(int i=;i<=n;++i)
{
scanf("%s",s+);
int len=strlen(s+);
for(int j=;j<=len;++j)
add_edge(s[]-'A'+,s[j]-'A'+);
}
}
inline void dfs(int k)
{
if(k==n+)
{
int ans=;
for(int j=;j<=n;++j)
if(flag[j]) ans++;
sum=min(ans,sum);
return;
}
for(int i=;i<=n;++i)
{
int biaozhi=true;
for(int l=head[k];l;l=edge[l].last)
{
if(pd[edge[l].v]==i)
{
biaozhi=false;
break;
}
}
if(!biaozhi) continue;
pd[k]=i;
flag[i]++;
dfs(k+);
flag[i]--;
pd[k]=;
} }
int main()
{
while(scanf("%d",&n)==)
{
if(n==) break;
input();
dfs();
printf("%d channels needed.\n",sum);
memset(edge,,sizeof(edge));
memset(head,,sizeof(head));
sum=(<<)-;t=;bb=false;
memset(flag,,sizeof(flag));
}
return ;
}
/*-------------对于上面那个代码-----------------*/
特殊数据: A:B
B:
C:
D:
E:
F:
G:
H:
I:
用上面的代码来处理这个非常稀疏的图时间是很长的,因为for(i-->n)枚举频道中的if语句几乎始终成立,那么dfs的复杂度就到了n^n的增长速度,当n==8时,已经1.*^8多了,自然会超时,所以必须改为迭代加深搜索。限定搜索的深度,实际上是不会到n的
/*改成迭代加深搜索之后,速度果然快了许多。
还有一个值得注意的地方:当sum是1的时候,channel是单数形式,其他时候是复数形式(英语不好被坑了)
*/
#include<iostream>
using namespace std;
#include<cstdio>
#include<cstring>
#define N 30
struct Edge{
int v,last;
}edge[N*N];
int head[N];
bool vis[N][N]={false};
int sum=(<<)-,n,t=;
int pd[N];
bool flag=false;
inline void add_edge(int u,int v)
{
if(vis[u][v]||vis[v][u]) return ;
vis[u][v]=true;vis[v][u]=true;
++t;
edge[t].v=v;
edge[t].last=head[u];
head[u]=t;
++t;
edge[t].v=u;
edge[t].last=head[v];
head[v]=t;
}
inline void input()
{
char s[N];
for(int i=;i<=n;++i)
{
scanf("%s",s+);
int len=strlen(s+);
for(int j=;j<=len;++j)
add_edge(s[]-'A'+,s[j]-'A'+);
}
}
inline void dfs(int k,int minn)
{
if(k==n+)
{
flag=true;
return;
}
for(int i=;i<=minn;++i)
{
bool biaozhi=true;
for(int l=head[k];l;l=edge[l].last)
{
if(pd[edge[l].v]==i)
{
biaozhi=false;
break;
}
}
if(!biaozhi) continue;
pd[k]=i;
dfs(k+,minn);
if(flag) return;
pd[k]=;
} }
int main()
{
while(scanf("%d",&n)==)
{
if(n==) break;
input();
for(int i=;i<=n;++i)
{
dfs(,i);
if(flag)
{
sum=i;
memset(pd,,sizeof(pd));
break;
}else memset(pd,,sizeof(pd));
}
if(sum>)
printf("%d channels needed.\n",sum);
else printf("%d channel needed.\n",sum);
memset(edge,,sizeof(edge));
memset(head,,sizeof(head));
sum=(<<)-;t=;
memset(vis,false,sizeof(vis));
flag=false;
}
return ;
}
迭代加深搜索 POJ 1129 Channel Allocation的更多相关文章
- POJ 1129 Channel Allocation(DFS)
Channel Allocation Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 13173 Accepted: 67 ...
- POJ 1129 Channel Allocation DFS 回溯
Channel Allocation Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 15546 Accepted: 78 ...
- poj 1129 Channel Allocation ( dfs )
题目:http://poj.org/problem?id=1129 题意:求最小m,使平面图能染成m色,相邻两块不同色由四色定理可知顶点最多需要4种颜色即可.我们于是从1开始试到3即可. #inclu ...
- POJ 1129 Channel Allocation 四色定理dfs
题目: http://poj.org/problem?id=1129 开始没读懂题,看discuss的做法,都是循环枚举的,很麻烦.然后我就决定dfs,调试了半天终于0ms A了. #include ...
- poj 1129 Channel Allocation
http://poj.org/problem?id=1129 import java.util.*; import java.math.*; public class Main { public st ...
- poj 1129 Channel Allocation(图着色,DFS)
题意: N个中继站,相邻的中继站频道不得相同,问最少需要几个频道. 输入输出: Sample Input 2 A: B: 4 A:BC B:ACD C:ABD D:BC 4 A:BCD B:ACD C ...
- 迭代加深搜索POJ 3134 Power Calculus
题意:输入正整数n(1<=n<=1000),问最少需要几次乘除法可以从x得到x的n次方,计算过程中x的指数要求是正的. 题解:这道题,他的结果是由1经过n次加减得到的,所以最先想到的就是暴 ...
- POJ1129Channel Allocation[迭代加深搜索 四色定理]
Channel Allocation Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 14601 Accepted: 74 ...
- poj 2248 Addition Chains (迭代加深搜索)
[题目描述] An addition chain for n is an integer sequence with the following four properties: a0 = 1 am ...
随机推荐
- LeetCode131:Palindrome Partitioning
题目: Given a string s, partition s such that every substring of the partition is a palindrome. Return ...
- java war run
#!/bin/bashdate=`date +'%Y%m%d %T'`pid=`ps -ef |grep Credit | grep -v grep|awk '{print $2}'`damocles ...
- 【OpenCV】选择ROI区域
问题描述:在测试目标跟踪算法时,需要选择不同区域作为目标,进行目标跟踪,测试目标跟踪的效果. 解决思路: 1.OpenCV中提供了鼠标交互控制,利用setMouseCallback()给固定的窗口设置 ...
- redis3.0 集群实战3 - java编程实战
本文主要描述使用jedis进行redis-cluster操作 jedis jedis是redis官方推荐使用的java redis客户端,github地址为,https://github.com/ ...
- mysql 5.6到percona 5.6小版本升级
假设原来是mysql 5.6.19社区版,现在要升级到percona server 5.6.30. 对于大的数据库来说,采用mysqldump方式进行迁移太花费时间了,可采用新安装加载原来数据库的方式 ...
- Android详细的对话框AlertDialog.Builder使用方法
我们在平时做开发的时候,免不了会用到各种各样的对话框,相信有过其他平台开发经验的朋友都会知道,大部分的平台都只提供了几个最简单的实现,如果我们想实现自己特定需求的对话框,大家可能首先会想到,通过继 ...
- 基于流的自动化构建工具------gulp (简单配置)
项目上线也有一阵子,回头过来看了看从最初的项目配置到开发的过程,总有些感慨,疲软期,正好花点时间,看看最初的配置情况 随着前端的发展,前端工程化慢慢成为业内的主流方式,项目开发的各种构建工具,也出现了 ...
- gulp入坑系列(2)——初试JS代码合并与压缩
在上一篇里成功安装了gulp到项目中,现在来测试一下gulp的合并与压缩功能 gulp入坑系列(1)--安装gulp(传送门):http://www.cnblogs.com/YuuyaRin/p/61 ...
- HTML 块元素
分为3类 1. 结构块 只能包含块级元素.它们包含结构含义,但没有语义含义,也就是,不能说明内容是什么,只能说明其组织方式. <ol> <ul> <dl> < ...
- copy 和 strong(或retain)的区别
http://stackoverflow.com/questions/18526909/whether-i-should-use-propertynonatomic-copy-or-propertyn ...