题目来源:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=3&page=show_problem&problem=39

 Stacking Boxes 

Background

Some concepts in Mathematics and Computer Science are simple in one or two dimensions but become more complex when extended to arbitrary dimensions. Consider solving differential equations in several dimensions and analyzing the topology of an n-dimensional hypercube. The former is much more complicated than its one dimensional relative while the latter bears a remarkable resemblance to its ``lower-class'' cousin.

The Problem

Consider an n-dimensional ``box'' given by its dimensions. In two dimensions the box (2,3) might represent a box with length 2 units and width 3 units. In three dimensions the box (4,8,9) can represent a box  (length, width, and height). In 6 dimensions it is, perhaps, unclear what the box (4,5,6,7,8,9) represents; but we can analyze properties of the box such as the sum of its dimensions.

In this problem you will analyze a property of a group of n-dimensional boxes. You are to determine the longest nesting string of boxes, that is a sequence of boxes  such that each box  nests in box  (  .

A box D = (  ) nests in a box E = (  ) if there is some rearrangement of the  such that when rearranged each dimension is less than the corresponding dimension in box E. This loosely corresponds to turning box D to see if it will fit in box E. However, since any rearrangement suffices, box D can be contorted, not just turned (see examples below).

For example, the box D = (2,6) nests in the box E = (7,3) since D can be rearranged as (6,2) so that each dimension is less than the corresponding dimension in E. The box D = (9,5,7,3) does NOT nest in the box E = (2,10,6,8) since no rearrangement of D results in a box that satisfies the nesting property, but F = (9,5,7,1) does nest in box E since F can be rearranged as (1,9,5,7) which nests in E.

Formally, we define nesting as follows: box D = (  ) nests in box E = (  ) if there is a permutation  of  such that (  ) ``fits'' in (  ) i.e., if  for all .

The Input

The input consists of a series of box sequences. Each box sequence begins with a line consisting of the the number of boxes k in the sequence followed by the dimensionality of the boxes, n (on the same line.)

This line is followed by k lines, one line per box with the n measurements of each box on one line separated by one or more spaces. The  line in the sequence (  ) gives the measurements for the  box.

There may be several box sequences in the input file. Your program should process all of them and determine, for each sequence, which of the k boxes determine the longest nesting string and the length of that nesting string (the number of boxes in the string).

In this problem the maximum dimensionality is 10 and the minimum dimensionality is 1. The maximum number of boxes in a sequence is 30.

The Output

For each box sequence in the input file, output the length of the longest nesting string on one line followed on the next line by a list of the boxes that comprise this string in order. The ``smallest'' or ``innermost'' box of the nesting string should be listed first, the next box (if there is one) should be listed second, etc.

The boxes should be numbered according to the order in which they appeared in the input file (first box is box 1, etc.).

If there is more than one longest nesting string then any one of them can be output.

Sample Input

5 2
3 7
8 10
5 2
9 11
21 18
8 6
5 2 20 1 30 10
23 15 7 9 11 3
40 50 34 24 14 4
9 10 11 12 13 14
31 4 18 8 27 17
44 32 13 19 41 19
1 2 3 4 5 6
80 37 47 18 21 9

Sample Output

5
3 1 2 4 5
4
7 2 5 6 解题思路:
题目意思:给定n个m维的矩形,问我们能够嵌套的矩形最多有几个,输出个数和嵌套的矩形编号。
代码:
 #include<bits/stdc++.h>
#define inf 0x7fffffff
using namespace std;
typedef long long LL; int k,n;
int dp[],pre[];
struct node
{
int an[];
int id;
friend bool operator < (node a,node b)
{
for (int i= ;i<n ;i++)
{
if (a.an[i] != b.an[i]) return a.an[i] < b.an[i];
}
}
}arr[]; void printOut(int u)
{
if (pre[u]!=-) printOut(pre[u]);
if (pre[u]==-) printf("%d",arr[u].id+ );
else printf(" %d",arr[u].id+ );
} int main()
{
while (scanf("%d%d",&k,&n)!=EOF)
{
memset(dp,,sizeof(dp));
memset(pre,-,sizeof(pre));
for (int i= ;i<k ;i++)
{
for (int j= ;j<n ;j++)
scanf("%d",&arr[i].an[j]);
arr[i].id=i;
sort(arr[i].an,arr[i].an+n);
}
sort(arr,arr+k);
for (int i= ;i<k ;i++)
{
int temp=;
for (int j= ;j<i ;j++)
{
int flag=;
for (int u= ;u<n ;u++)
if (arr[i].an[u]<=arr[j].an[u]) {flag=;break; }
if (!flag && dp[j]>temp)
{
temp=dp[j];
pre[i]=j;
}
}
dp[i]=temp+;
}
int maxlen=-,num=;
for (int i= ;i<k ;i++)
{
if (dp[i]>maxlen)
{
maxlen=dp[i];
num=i;
}
}
printf("%d\n",maxlen);
printOut(num);
printf("\n");
}
return ;
}
 

UVa 103 - Stacking Boxes(dp求解)的更多相关文章

  1. UVA 103 Stacking Boxes (dp + DAG上的最长路径 + 记忆化搜索)

     Stacking Boxes  Background Some concepts in Mathematics and Computer Science are simple in one or t ...

  2. UVa 103 Stacking Boxes --- DAG上的动态规划

    UVa 103 题目大意:给定n个箱子,每个箱子有m个维度, 一个箱子可以嵌套在另一个箱子中当且仅当该箱子的所有的维度大小全部小于另一个箱子的相应维度, (注意箱子可以旋转,即箱子维度可以互换),求最 ...

  3. uva 103 Stacking Boxes(DAG)

    题目连接:103 - Stacking Boxes 题目大意:有n个w维立体, 输出立体互相嵌套的层数的最大值, 并输出嵌套方式, 可嵌套的要求是外层立体的w条边可以分别对应大于内层立体. 解题思路: ...

  4. UVa 103 - Stacking Boxes (LIS,打印路径)

    链接:UVa 103 题意:给n维图形,它们的边长是{d1,d2,d3...dn},  对于两个n维图形,求满足当中一个的全部边长 依照随意顺序都一一相应小于还有一个的边长,这种最长序列的个数,而且打 ...

  5. UVA 103 Stacking Boxes n维最长上升子序列

    题目链接:UVA - 103 题意:现有k个箱子,每个箱子可以用n维向量表示.如果一个箱子的n维向量均比另一个箱子的n维向量大,那么它们可以套接在一起,每个箱子的n维向量可以互相交换值,如箱子(2,6 ...

  6. uva 103 Stacking Boxes(最长上升子序列)

    Description    Stacking Boxes  Background Some concepts in Mathematics and Computer Science are simp ...

  7. UVA 103 Stacking Boxes 套箱子 DAG最长路 dp记忆化搜索

    题意:给出几个多维的箱子,如果箱子的每一边都小于另一个箱子的对应边,那就称这个箱子小于另一个箱子,然后要求能够套出的最多的箱子. 要注意的是关系图的构建,对箱子的边排序,如果分别都小于另一个箱子就说明 ...

  8. UVa 103 - Stacking Boxes

    题目大意:矩阵嵌套,不过维数是多维的.有两个个k维的盒子A(a1, a1...ak), B(b1, b2...bk),若能找到(a1...ak)的一个排列使得ai < bi,则盒子A可嵌套在盒子 ...

  9. UVA 103 Stacking Boxes --LIS

    实际上是一个扩展维度的矩形嵌套问题. 一个物体能嵌入另一个物体中,当且仅当这个物体的所有维度的长度都小于另外一个(本题是小于等于),又因为可以旋转等变换,所以干脆将每个箱子的边从小到大排序,以便于判断 ...

随机推荐

  1. 利用react native创建一个天气APP

    我们将构建一个实列程序:天气App,(你可以在react native 中创建一个天气应用项目),我们将学习使用并结合可定义模板(stylesheets).盒式布局(flexbox).网络通信.用户输 ...

  2. bootstrap插件学习-bootstrap.alert.js

    我们先看bootstrap.alert.js的结构 var dismiss = '[data-dismiss="alert"]' //自定义属性 Alert = function ...

  3. Linux的一些命令

    程序 # rpm -qa                # 查看所有安装的软件包 系统 # uname -a               # 查看内核/操作系统/CPU信息 # head -n 1 / ...

  4. python函数式编程

    函数式编程是使用一系列函数去解决问题,按照一般编程思维,面对问题时我们的思考方式是“怎么干”,而函数函数式编程的思考方式是我要“干什么”. 至于函数式编程的特点暂不总结,我们直接拿例子来体会什么是函数 ...

  5. Vue基础---->VueJS的使用(二)

    组件(Component)是 Vue.js 最强大的功能之一.组件可以扩展 HTML 元素,封装可重用的代码.在较高层面上,组件是自定义元素,Vue.js 的编译器为它添加特殊功能.今天我们就来学习一 ...

  6. .NET C# 使用S22.Imap.dll接收邮件 并且指定收取的文件夹的未读邮件,并且更改未读准态

    string host = Conf.ConfigInfo.POP_Host; int port = Conf.ConfigInfo.POP_Port; string username =Conf.C ...

  7. 通过LINQ表达式树动态构建查询条件

    第一种方法: public static class PredicateExtensions { public static Expression<Func<T, bool>> ...

  8. Struts2文件上传(基于表单的文件上传)

    •Commons-FileUpload组件 –Commons是Apache开放源代码组织的一个Java子项目,其中的FileUpload是用来处理HTTP文件上传的子项目   •Commons-Fil ...

  9. Flex 布局相关用法

    前言: 布局的传统解决方案,基于盒状模型,依赖 display属性 + position属性 + float属性.它对于那些特殊布局非常不方便,比如,垂直居中 就不容易实现. 2009年,W3C提出了 ...

  10. Node.js爬虫数据抓取乱码问题总结

    一.非UTF-8页面处理 1.背景 windows-1251编码 比如俄语网站:https://vk.com/cciinniikk 可耻地发现是这种编码 所有这里主要说的是 Windows-1251( ...