UVa 103 - Stacking Boxes(dp求解)
Stacking Boxes |
Background
Some concepts in Mathematics and Computer Science are simple in one or two dimensions but become more complex when extended to arbitrary dimensions. Consider solving differential equations in several dimensions and analyzing the topology of an n-dimensional hypercube. The former is much more complicated than its one dimensional relative while the latter bears a remarkable resemblance to its ``lower-class'' cousin.
The Problem
Consider an n-dimensional ``box'' given by its dimensions. In two dimensions the box (2,3) might represent a box with length 2 units and width 3 units. In three dimensions the box (4,8,9) can represent a box (length, width, and height). In 6 dimensions it is, perhaps, unclear what the box (4,5,6,7,8,9) represents; but we can analyze properties of the box such as the sum of its dimensions.
In this problem you will analyze a property of a group of n-dimensional boxes. You are to determine the longest nesting string of boxes, that is a sequence of boxes such that each box
nests in box
(
.
A box D = ( ) nests in a box E = (
) if there is some rearrangement of the
such that when rearranged each dimension is less than the corresponding dimension in box E. This loosely corresponds to turning box D to see if it will fit in box E. However, since any rearrangement suffices, box D can be contorted, not just turned (see examples below).
For example, the box D = (2,6) nests in the box E = (7,3) since D can be rearranged as (6,2) so that each dimension is less than the corresponding dimension in E. The box D = (9,5,7,3) does NOT nest in the box E = (2,10,6,8) since no rearrangement of D results in a box that satisfies the nesting property, but F = (9,5,7,1) does nest in box E since F can be rearranged as (1,9,5,7) which nests in E.
Formally, we define nesting as follows: box D = ( ) nests in box E = (
) if there is a permutation
of
such that (
) ``fits'' in (
) i.e., if
for all
.
The Input
The input consists of a series of box sequences. Each box sequence begins with a line consisting of the the number of boxes k in the sequence followed by the dimensionality of the boxes, n (on the same line.)
This line is followed by k lines, one line per box with the n measurements of each box on one line separated by one or more spaces. The line in the sequence (
) gives the measurements for the
box.
There may be several box sequences in the input file. Your program should process all of them and determine, for each sequence, which of the k boxes determine the longest nesting string and the length of that nesting string (the number of boxes in the string).
In this problem the maximum dimensionality is 10 and the minimum dimensionality is 1. The maximum number of boxes in a sequence is 30.
The Output
For each box sequence in the input file, output the length of the longest nesting string on one line followed on the next line by a list of the boxes that comprise this string in order. The ``smallest'' or ``innermost'' box of the nesting string should be listed first, the next box (if there is one) should be listed second, etc.
The boxes should be numbered according to the order in which they appeared in the input file (first box is box 1, etc.).
If there is more than one longest nesting string then any one of them can be output.
Sample Input
5 2
3 7
8 10
5 2
9 11
21 18
8 6
5 2 20 1 30 10
23 15 7 9 11 3
40 50 34 24 14 4
9 10 11 12 13 14
31 4 18 8 27 17
44 32 13 19 41 19
1 2 3 4 5 6
80 37 47 18 21 9
Sample Output
5
3 1 2 4 5
4
7 2 5 6 解题思路:
题目意思:给定n个m维的矩形,问我们能够嵌套的矩形最多有几个,输出个数和嵌套的矩形编号。
代码:
#include<bits/stdc++.h>
#define inf 0x7fffffff
using namespace std;
typedef long long LL; int k,n;
int dp[],pre[];
struct node
{
int an[];
int id;
friend bool operator < (node a,node b)
{
for (int i= ;i<n ;i++)
{
if (a.an[i] != b.an[i]) return a.an[i] < b.an[i];
}
}
}arr[]; void printOut(int u)
{
if (pre[u]!=-) printOut(pre[u]);
if (pre[u]==-) printf("%d",arr[u].id+ );
else printf(" %d",arr[u].id+ );
} int main()
{
while (scanf("%d%d",&k,&n)!=EOF)
{
memset(dp,,sizeof(dp));
memset(pre,-,sizeof(pre));
for (int i= ;i<k ;i++)
{
for (int j= ;j<n ;j++)
scanf("%d",&arr[i].an[j]);
arr[i].id=i;
sort(arr[i].an,arr[i].an+n);
}
sort(arr,arr+k);
for (int i= ;i<k ;i++)
{
int temp=;
for (int j= ;j<i ;j++)
{
int flag=;
for (int u= ;u<n ;u++)
if (arr[i].an[u]<=arr[j].an[u]) {flag=;break; }
if (!flag && dp[j]>temp)
{
temp=dp[j];
pre[i]=j;
}
}
dp[i]=temp+;
}
int maxlen=-,num=;
for (int i= ;i<k ;i++)
{
if (dp[i]>maxlen)
{
maxlen=dp[i];
num=i;
}
}
printf("%d\n",maxlen);
printOut(num);
printf("\n");
}
return ;
}
UVa 103 - Stacking Boxes(dp求解)的更多相关文章
- UVA 103 Stacking Boxes (dp + DAG上的最长路径 + 记忆化搜索)
Stacking Boxes Background Some concepts in Mathematics and Computer Science are simple in one or t ...
- UVa 103 Stacking Boxes --- DAG上的动态规划
UVa 103 题目大意:给定n个箱子,每个箱子有m个维度, 一个箱子可以嵌套在另一个箱子中当且仅当该箱子的所有的维度大小全部小于另一个箱子的相应维度, (注意箱子可以旋转,即箱子维度可以互换),求最 ...
- uva 103 Stacking Boxes(DAG)
题目连接:103 - Stacking Boxes 题目大意:有n个w维立体, 输出立体互相嵌套的层数的最大值, 并输出嵌套方式, 可嵌套的要求是外层立体的w条边可以分别对应大于内层立体. 解题思路: ...
- UVa 103 - Stacking Boxes (LIS,打印路径)
链接:UVa 103 题意:给n维图形,它们的边长是{d1,d2,d3...dn}, 对于两个n维图形,求满足当中一个的全部边长 依照随意顺序都一一相应小于还有一个的边长,这种最长序列的个数,而且打 ...
- UVA 103 Stacking Boxes n维最长上升子序列
题目链接:UVA - 103 题意:现有k个箱子,每个箱子可以用n维向量表示.如果一个箱子的n维向量均比另一个箱子的n维向量大,那么它们可以套接在一起,每个箱子的n维向量可以互相交换值,如箱子(2,6 ...
- uva 103 Stacking Boxes(最长上升子序列)
Description Stacking Boxes Background Some concepts in Mathematics and Computer Science are simp ...
- UVA 103 Stacking Boxes 套箱子 DAG最长路 dp记忆化搜索
题意:给出几个多维的箱子,如果箱子的每一边都小于另一个箱子的对应边,那就称这个箱子小于另一个箱子,然后要求能够套出的最多的箱子. 要注意的是关系图的构建,对箱子的边排序,如果分别都小于另一个箱子就说明 ...
- UVa 103 - Stacking Boxes
题目大意:矩阵嵌套,不过维数是多维的.有两个个k维的盒子A(a1, a1...ak), B(b1, b2...bk),若能找到(a1...ak)的一个排列使得ai < bi,则盒子A可嵌套在盒子 ...
- UVA 103 Stacking Boxes --LIS
实际上是一个扩展维度的矩形嵌套问题. 一个物体能嵌入另一个物体中,当且仅当这个物体的所有维度的长度都小于另外一个(本题是小于等于),又因为可以旋转等变换,所以干脆将每个箱子的边从小到大排序,以便于判断 ...
随机推荐
- Android获取屏幕长宽
总结了下,我遇到的获取Android屏幕长宽的方式总共有三种.大同小异,重点在于如何获取系统中的WindowManager管理类对象,方可对数据的操作: 代码如下 /** * @return 屏幕的长 ...
- LeetCode——Find Median from Data Stream
Median is the middle value in an ordered integer list. If the size of the list is even, there is no ...
- TreeSet与TreeMap浅解
TreeSet与TreeMap的关系: 1.TreeSet 实际上就是用TreeMap来组织数据的,因为在TreeSet中保存了一个NavigableMap<e,Object>接口实例变量 ...
- sprint5.0
团队成员完成自己认领的任务. 燃尽图:理解.设计并画出本次Sprint的燃尽图的理想线.参考图6. 每日立会更新任务板上任务完成情况.燃尽图的实际线,分析项目进度是否在正轨.每天的例会结束后的都为任务 ...
- Scrum 项目 7.0 Sprint回顾
7.0------------------------------------------------ Sprint回顾 让我们一次比一次做得更好. 1.回顾组织 主题:“我们怎样才能在下个spr ...
- ok6410 android driver(12)
In this essay, I will talk about how to write the service libraries. TIPS : I won't discuss the name ...
- SQL Server分布式数据库技术(LinkedServer,CT,SSB)
SQL Server自定义业务功能的数据同步 在不同业务需求的驱动下,数据库的模块化拆分将会面临一些比较特殊的业务逻辑处理需求.例如,在数据库层面的数据同步需求.同步过程中,可能会有一些比较复杂的业务 ...
- 概率论 --- Uva 11181 Probability|Given
Uva 11181 Probability|Given Problem's Link: http://acm.hust.edu.cn/vjudge/problem/viewProblem.acti ...
- 演练:使用Xamarin.Forms开发产品介绍性质的应用(VB版)
概述 Xamarin这个使用mono和.net core的跨平台开发框架这几年在不断发展.被微软收购后的Xamarin为个人开发者提供了免费版的Xamarin for Visual Studio,吸引 ...
- IIS7.5支持解析读取.json文件数据
在站点中添加 MIME类型去支持Json文件的解析 添加mime类型 文件扩展名:.json MIME类型:application/json 添加成功后即可. 如果不能直接操作iis也可以直接在web ...