转自:http://www.cnblogs.com/kuangbin/archive/2012/04/01/2429463.html

大致题意:

给定一个大数K,K是两个大素数的乘积的值。

再给定一个int内的数L

问这两个大素数中最小的一个是否小于L,如果小于则输出这个素数。

解题思路:

首先对题目的插图表示无语。。。

高精度求模+同余模定理

1、  Char格式读入K。把K转成千进制Kt,同时变为int型。

把数字往大进制转换能够加快运算效率。若用十进制则耗费很多时间,会TLE。

千进制的性质与十进制相似。

例如,把K=1234567890转成千进制,就变成了:Kt=[  1][234][567][890]。

为了方便处理,我的程序是按“局部有序,全局倒序”模式存放Kt

即Kt=[890][567][234][1  ]  (一个中括号代表一个数组元素)

2、  素数打表,把10^6内的素数全部预打表,在求模时则枚举到小于L为止。

注意打表不能只打到100W,要保证素数表中最大的素数必须大于10^6,否则当L=100W且K为GOOD时,会因为数组越界而RE,这是因为越界后prime都是负无穷的数,枚举的while(prime[pMin]<L)循环会陷入死循环

3、  高精度求模。

主要利用Kt数组和同余模定理。

例如要验证123是否被3整除,只需求模124%3

但当123是一个大数时,就不能直接求,只能通过同余模定理对大数“分块”间接求模

具体做法是:

先求1%3 = 1

再求(1*10+2)%3 = 0

再求 (0*10+4)% 3 = 1

那么就间接得到124%3=1,这是显然正确的

而且不难发现, (1*10+2)*10+4 = 124

这是在10进制下的做法,千进制也同理,*10改为*1000就可以了

算法思路:千进制表示已知数,进行高精度取余即可,不过大牛们说,百进制TLE,千进制AC,万进制WA,

Sample Input

143 10
143 20
667 20
667 30
2573 30
2573 40
0 0

Sample Output

GOOD
BAD 11
GOOD
BAD 23
GOOD
BAD 31
 #include<stdio.h>
#include<string.h>
const int MAXN=;
int prime[MAXN+];
int getPrime()
{
memset(prime,,sizeof(prime));
for(int i=;i<=MAXN;i++)
{
if(!prime[i]) prime[++prime[]]=i;
for(int j=;j<=prime[]&&prime[j]<=MAXN/i;j++)
{
prime[prime[j]*i]=;
if(i%prime[j]==) break;
}
}
return prime[];
} int Kt[];
int L;
char str[]; bool mod(int *K,int p,int len)
{
int sq=;
for(int i=len-;i>=;i--)
sq=(sq*+K[i])%p;
if(!sq) return false;
return true;
}
int main()
{
getPrime(); while(scanf("%s %d",&str,&L)!=EOF)
{
if(L==&&strcmp(str,"")==) break;
int len=strlen(str);
memset(Kt,,sizeof(Kt));
for(int i=;i<len;i++)
{
int ii=(len+-i)/-;
Kt[ii]=Kt[ii]*+str[i]-'';
}
int lenKt=(len+)/;
bool flag=true;
int pMin=;
while(prime[pMin]<L)
{
if(!mod(Kt,prime[pMin],lenKt))
{
flag=false;
printf("BAD %d\n",prime[pMin]);
break;
}
pMin++;
}
if(flag) printf("GOOD\n");
}
return ;
}

poj 2635 千进制的更多相关文章

  1. POJ - 2635 The Embarrassed Cryptographer(千进制+同余模)

    http://poj.org/problem?id=2635 题意 给一个大数K,K一定为两个素数的乘积.现给出一个L,若K的两个因子有小于L的,就输出BAD,并输出较小的因子.否则输出GOOD 分析 ...

  2. POJ 2635 The Embarrassed Cryptographer (千进制,素数筛,同余定理)

    The Embarrassed Cryptographer Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 15767   A ...

  3. POJ 1220 高精度/进制转换

    n进制转m进制,虽然知道短除法但是还是不太理解,看了代码理解一些了: 记住这个就好了: for(int k=0;l; ){ for(int i=l ; i>=1 ; i--){ num[i - ...

  4. poj 2635 The Embarrassed Cryptographer(数论)

    题目:http://poj.org/problem?id=2635 高精度求模  同余模定理. 题意: 给定一个大数K,K是两个大素数的乘积的值.再给定一个int内的数L 问这两个大素数中最小的一个是 ...

  5. POJ - 2635 E - The Embarrassed Cryptographer

    The young and very promising cryptographer Odd Even has implemented the security module of a large s ...

  6. poj2635(千进制取模+同余模定理)

    题目链接:https://www.cnblogs.com/kuangbin/archive/2012/04/01/2429463.html 题意:给出大数s (s<=10100) ,L (< ...

  7. POJ 3191 The Moronic Cowmpouter(进制转换)

    题目链接 题意 : 将一个10进制整数转化为-2进制的数. 思路 :如果你将-2进制下的123转化为十进制是1*(-2)^2+2*(-2)^1+3*(-2)^0.所以十进制转化为-2进制就是一个逆过程 ...

  8. POJ 1220 NUMBER BASE CONVERSION(较复杂的进制转换)

    题目链接 题意 : 给你一个a进制的数串s,让你转化成b进制的输出. A = 10, B = 11, ..., Z = 35, a = 36, b = 37, ..., z = 61,0到9还是原来的 ...

  9. POJ 2305 Basic remains(进制转换)

    题目链接:http://poj.org/problem?id=2305 ime Limit: 1000MS   Memory Limit: 65536K Total Submissions: 5326 ...

随机推荐

  1. Get value from agent failed: cannot connect to [[192.168.186.130]:10050]: [113]No route to host

    客户端配置zabbix-agent 后,网页端出现Get value from agent failed: cannot connect to [[192.168.186.130]:10050]: [ ...

  2. Linux SSH安全策略限制IP登录方法(转)

    本文介绍了Linux SSH安全策略限制IP登录的两种方法.具体如下: 方法一: 首先需要限制登录的ip(或者如果需要自己本地登录,查看最后登录ip即可) Vim /etc/hosts.allow 输 ...

  3. VO(DTO)模式在架构设计中是否需要

    DTO(VO):也就是一般意义上的VO,封装后的对象.一般用于Web层—Service层间的数据传输入. PO:也就是一般概念上的Domain Object,如hibernate 中的Entity.一 ...

  4. IE浏览器模式设置

    文件兼容性用于定义让IE如何编译你的网页.此文件解释文件兼容性,如何指定你网站的文件兼容性模式以及如何判断一个网页该使用的文件模式. 前言 为了帮助确保你的网页在所有未来的IE版本都有一致的外观,IE ...

  5. 你知道require是什么吗?

    引题 用过node的同学应该都知道require是用来加载模块的,那你是否存在如下的疑问呢? 1. require(path)是如何依据path找到对应module呢? 2. 为何在模块定义中,一定要 ...

  6. UNITY3D与iOS交互解决方案

    原地址:http://bbs.18183.com/thread-456979-1-1.html 本帖最后由 啊,将进酒 于 2014-2-27 11:17 编辑 “授人以鱼,不如授人以渔”,以UNIT ...

  7. 异常:The absolute uri: http://www.springframework.org/security/tags cannot be resolved in either web.xml or the jar files deployed with this application

    The absolute uri: http://www.springframework.org/security/tags cannot be resolved in either web.xml ...

  8. SQL SERVER 中的事务

    所谓事务是用户定义的一个数据库操作序列,这些操作要么全做要么全不做,是一个不可分割的工作单位.例如,在关系数据库中,一个事务可以是一条SQL语句.一组SQL语句或整个程序. 简单举个例子就是 你要同时 ...

  9. 【分布式存储】GlusterFS failing to mount at boot with Ubuntu 14.04

    GlusterFS failing to mount at boot with Ubuntu 14.04   Previously I asked about mounting GlusterFS a ...

  10. A + B Problem

    Write a function that add two numbers A and B. You should not use + or any arithmetic operators. 分析: ...