#include <stdio.h>
#include <math.h>
#include <stdlib.h>
#define M 3 //方阵的行数 列数
#define ε0 0.00000001//ε0为要求的精度
#define N 100000//最大迭代次数 //函数预声明
void printMatrix(double a[][], int m, int n);//矩阵的打印
void printVector(double a[], int m);//向量的打印
double dotVector(double a[], double b[], int m);//两个一维向量之积,结果为一个数
void dotMatrVect(double a[][], double yk0[], double uk1[], int m);//矩阵和向量点积u=a.*y,yk0对应于书上y(k-1)
void unitVector(double a[], int η, int m);//向量的单位化
double relaError(double lamada1, double lamada2);//计算相对误差 //主函数
int main(void)
{
double a[M][M] = { { , -, }, { -, -, }, { -, -, } };//待求特征值和特征向量的矩阵
double uk0[M] = { 1.0, 0.0, 0.0 };//迭代向量
double uk1[M] = { 0.0, 0.0, 0.0 };//迭代向量
double β0 = 0.0;//β(k-1)
double β1 = 0.0;//βk
double η0 = 0.0;//向量u(k-1)的二范数
double ε = 0.0;//计算的精度
printf("待求特征值和特征向量的矩阵A:\n");
printMatrix(a, M, M);
printf("\n");
printf("初始向量u0:\n");
printVector(uk0, M);
printf("\n");
printf("第几次计算\t\t uk\t\t\t\t yk\t\t βk\n");
for (int i = ; i < N; i++)
{
printf("%d\t", i);//***打印计算次数i
printVector(uk0, M);//***打印uk
printf("|");//***打印分隔
η0 = sqrt(dotVector(uk0, uk0, M));//初始向量u0的2范数
unitVector(uk0, η0, M);//将初始向量u0单位化作为y(k-1)也就是yk0
printVector(uk0, M); //***打印单位化后的uk0,也就是y(k-1)
dotMatrVect(a, uk0, uk1, M);//uk1 = A.*yk0;
printf("|");//***打印分隔
β1 = dotVector(uk0, uk1, M);//β1=y(k-1).*uk1
if (i>)
{
printf("%lf ", β1);//***打印βk
}
printf("\n");
ε = relaError(β0, β1);
//判断是否收敛
if (ε < ε0) //若收敛
{
printf("收敛\n");
break;
}
else //若不收敛,则变量交换 uk0=uk1;
{
//double tem = 0.0;
for (int q = ; q < M; q++)
{
//uk0[q] = uk1[q];
//tem = uk0[q];
uk0[q] = uk1[q];
uk1[q] = 0.0;//在第二次使用前一定把uk1[i]的所有元素归零!!!!!!
}
β0 = β1;
}
} system("pause");
} //函数具体执行 //矩阵的打印
void printMatrix(double a[][M], int m, int n)
{
for (int i = ; i<m; i++)
{
for (int j = ; j<n; j++)
{
printf("%lf ", a[i][j]);
}
printf("\n");
}
}
//向量的打印
void printVector(double a[], int m)
{
for (int i = ; i < m; i++)
{
printf("%lf ", a[i]);
}
}
//两个一维向量之积
double dotVector(double a[], double b[], int m)
{
double dotsum = 0.0;
for (int i = ; i < m; i++)
{
dotsum = dotsum + a[i] * b[i];
}
return(dotsum);
}
//矩阵和向量点积u=a.*y,yk0对应于书上y(k-1)
void dotMatrVect(double a[][M], double yk0[], double uk1[], int m)
{
double a1, b, c;
for (int i = ; i < m; i++)
{
uk1[i] = ;//在第二次使用前一定把uk1[i]的所有元素归零!!!!!!
for (int j = ; j < m; j++)
{
uk1[i] = uk1[i] + a[i][j] * yk0[j];//在第二次使用前一定把uk1[i]的所有元素归零!!!!!!!!!
a1 = a[i][j];
b = yk0[j];
c = uk1[i];
//printf("a[%d][%d]=%lf\n",i,j,a[i][j]);
} }
//printVector(uk1, 3);
}
//向量的单位化
void unitVector(double a[], int η, int m)
{
for (int i = ; i < m; i++)
{
a[i] = a[i] / η;
}
}
//计算误差
double relaError(double β1, double β2)
{
double ε;
ε = fabs(β2 - β1) / fabs(β2);
return ε;
}

为啥上面的总是算的不是太精确呢??

奥,因为二范数取的是int类型;

 #include <stdio.h>
#include <math.h>
#include <stdlib.h>
#define M 3 //方阵的行数 列数
#define ε0 0.00000001//ε0为要求的精度
#define N 100000//最大迭代次数 //函数预声明
void printMatrix(double a[][], int m, int n);//矩阵的打印
void printVector(double a[], int m);//向量的打印
double dotVector(double a[], double b[], int m);//两个一维向量之积,结果为一个数
void dotMatrVect(double a[][], double yk0[], double uk1[], int m);//矩阵和向量点积u=a.*y,yk0对应于书上y(k-1)
void unitVector(double a[], double η, int m);//向量的单位化
double relaError(double lamada1, double lamada2);//计算相对误差 //主函数
int main(void)
{
double a[M][M] = { { , -, }, { -, -, }, { -, -, } };//待求特征值和特征向量的矩阵
double uk0[M] = { 2.0, 1.0, 6.0 };//迭代向量
double uk1[M] = { 0.0, 0.0, 0.0 };//迭代向量
double β0 = 0.0;//β(k-1)
double β1 = 0.0;//βk
double η0 = 0.0;//向量u(k-1)的二范数
double ε = 0.0;//计算的精度
printf("待求特征值和特征向量的矩阵A:\n");
printMatrix(a, M, M);
printf("\n");
printf("初始向量u0:\n");
printVector(uk0, M);
printf("\n");
printf("第几次计算\t\t uk\t\t\t\t yk\t\t βk\n");
for (int i = ; i < N; i++)
{
printf("%d\t", i);//***打印计算次数i
printVector(uk0, M);//***打印uk
printf("|");//***打印分隔
η0 = sqrt(dotVector(uk0, uk0, M));//初始向量u0的2范数
unitVector(uk0, η0, M);//将初始向量u0单位化作为y(k-1)也就是yk0
printVector(uk0, M); //***打印单位化后的uk0,也就是y(k-1)
dotMatrVect(a, uk0, uk1, M);//uk1 = A.*yk0;
printf("|");//***打印分隔
β1 = dotVector(uk0, uk1, M);//β1=y(k-1).*uk1
if (i>)
{
printf("%lf ", β1);//***打印βk
}
printf("\n");
ε = relaError(β0, β1);
//判断是否收敛
if (ε < ε0) //若收敛
{
printf("收敛\n");
break;
}
else //若不收敛,则变量交换 uk0=uk1;
{
//double tem = 0.0;
for (int q = ; q < M; q++)
{
//uk0[q] = uk1[q];
//tem = uk0[q];
uk0[q] = uk1[q];
uk1[q] = 0.0;//在第二次使用前一定把uk1[i]的所有元素归零!!!!!!
}
β0 = β1;
}
} system("pause");
} //函数具体执行 //矩阵的打印
void printMatrix(double a[][M], int m, int n)
{
for (int i = ; i<m; i++)
{
for (int j = ; j<n; j++)
{
printf("%lf ", a[i][j]);
}
printf("\n");
}
}
//向量的打印
void printVector(double a[], int m)
{
for (int i = ; i < m; i++)
{
printf("%lf ", a[i]);
}
}
//两个一维向量之积
double dotVector(double a[], double b[], int m)
{
double dotsum = 0.0;
for (int i = ; i < m; i++)
{
dotsum = dotsum + a[i] * b[i];
}
return(dotsum);
}
//矩阵和向量点积u=a.*y,yk0对应于书上y(k-1)
void dotMatrVect(double a[][M], double yk0[], double uk1[], int m)
{
double a1, b, c;
for (int i = ; i < m; i++)
{
uk1[i] = ;//在第二次使用前一定把uk1[i]的所有元素归零!!!!!!
for (int j = ; j < m; j++)
{
uk1[i] = uk1[i] + a[i][j] * yk0[j];//在第二次使用前一定把uk1[i]的所有元素归零!!!!!!!!!
a1 = a[i][j];
b = yk0[j];
c = uk1[i];
//printf("a[%d][%d]=%lf\n",i,j,a[i][j]);
} }
//printVector(uk1, 3);
}
//向量的单位化
void unitVector(double a[], double η, int m)
{
for (int i = ; i < m; i++)
{
a[i] = a[i] / η;
}
}
//计算误差
double relaError(double β1, double β2)
{
double ε;
ε = fabs(β2 - β1) / fabs(β2);
return ε;
}

精确结果是 绝对值最大的特征值为45,对应的特征向量为(0,-0.5,-1)

c语言计算矩阵特征值和特征向量-1(幂法)的更多相关文章

  1. 矩阵的特征值和特征向量的雅克比算法C/C++实现

    矩阵的特征值和特征向量是线性代数以及矩阵论中很重要的一个概念.在遥感领域也是经经常使用到.比方多光谱以及高光谱图像的主成分分析要求解波段间协方差矩阵或者相关系数矩阵的特征值和特征向量. 依据普通线性代 ...

  2. 采用梯度下降优化器(Gradient Descent optimizer)结合禁忌搜索(Tabu Search)求解矩阵的全部特征值和特征向量

    [前言] 对于矩阵(Matrix)的特征值(Eigens)求解,采用数值分析(Number Analysis)的方法有一些,我熟知的是针对实对称矩阵(Real Symmetric Matrix)的特征 ...

  3. (原)使用mkl计算特征值和特征向量

    转载请注明出处: http://www.cnblogs.com/darkknightzh/p/5585271.html 参考文档:mkl官方文档 lapack_int LAPACKE_sgeev(in ...

  4. 利用python做矩阵的简单运算(行列式、特征值、特征向量等的求解)

    import numpy as np lis = np.mat([[1,2,3],[3,4,5],[4,5,6]]) print(np.linalg.inv(lis)) # 求矩阵的逆矩阵 [[-1. ...

  5. python计算平面的法向-利用协方差矩阵求解特征值和特征向量

    Obvious,最小特征值对应的特征向量为平面的法向 这个问题还有个关键是通过python求协方差矩阵的特征值和特征向量,np.linalg.eig()方法直接返回了特征值的向量和特征向量的矩阵 sc ...

  6. java语言编写矩阵的四则运算

    题目要求如下: 设计程序实现矩阵的四则运算 设计要求: (1) 实现矩阵的四则运算. (2) 考虑实现带变元的矩阵计算. (3)考虑实现矩阵的特征值和特征向量的计算. 我使用java语言写的 目录结构 ...

  7. opencv学习之路(38)、Mat像素统计基础——均值,标准差,协方差;特征值,特征向量

    本文部分内容转自 https://www.cnblogs.com/chaosimple/p/3182157.html 一.统计学概念 二.为什么需要协方差 三.协方差矩阵 注:上述协方差矩阵还需要除以 ...

  8. eig()函数求特征值、特征向量、归一化

    在MATLAB中,计算矩阵A的特征值和特征向量的函数是eig(A),常用的调用格式有 5种:(1) E=eig(A):求矩阵A的全部特征值,构成向量E. 想求最大特征值用:max(eig(A))就好了 ...

  9. Python与矩阵论——特征值与特征向量

    Python计算特征值与特征向量案例 例子1 import numpy as np A = np.array([[3,-1],[-1,3]]) print('打印A:\n{}'.format(A)) ...

随机推荐

  1. sublime-text3 3059基本配置

    1.下载安装官方版注册机语言包 参考安装: http://www.xiumu.org/note/sublime-text-3.shtml 2.插件 Package ControlConvertToUT ...

  2. appium 等待方法 转

    前些日子,配置好了appium测试环境,至于环境怎么搭建,参考:http://www.cnblogs.com/tobecrazy/p/4562199.html   知乎Android客户端登陆:htt ...

  3. Spring-boot-admin功能说明

    http://blog.csdn.net/xingfulangren/article/details/52304413 **************************************** ...

  4. Docker部署Hadoop集群

    Docker部署Hadoop集群 2016-09-27 杜亦舒 前几天写了文章"Hadoop 集群搭建"之后,一个朋友留言说希望介绍下如何使用Docker部署,这个建议很好,Doc ...

  5. 原生Android App项目调用Untiy导出的Android项目

    背景:采用Google VR SDK for Unity 开发3D场景功能,然后导出Android项目,合并到一个Android App里面,供其它Activity调用. 用Google VR for ...

  6. Asp.net有关GridView的使用

    一.带提示语句的删除 二.使用config里面的连接字符串 三.鼠标移到GridView某一行时改变该行的背景色方法 四.两个事件 五.GridView实现自动编号 不难写

  7. MYSQL命令行使用指南

    一.连接MYSQL. 格式: mysql -h主机地址 -u用户名 -p用户密码 1.例1:连接到本机上的MYSQL. 首先在打开DOS窗口,然后进入目录 mysqlbin,再键入命令mysql -u ...

  8. 拾取模型的原理及其在THREE.JS中的代码实现

    1. Three.js中的拾取  1.1. 从模型转到屏幕上的过程说开 由于图形显示的基本单位是三角形,那就先从一个三角形从世界坐标转到屏幕坐标说起,例如三角形abc 乘以模型视图矩阵就进入了视点坐标 ...

  9. Javascript学习笔记3 Javascript与BOM简介

    什么是BOM BOM是browser object model的缩写,简称浏览器对象模型 BOM提供了独立于内容而与浏览器窗口进行交互的对象 由于BOM主要用于管理窗口与窗口之间的通讯,因此其核心对象 ...

  10. Maven学习链接

    别人的资料很多且写的很详细,我这里先收藏,等学习到一定阶段且有时间再整理自己的积累. 1.eclipse安装maven插件方法: http://blog.csdn.net/kittyboy0001/a ...