c语言计算矩阵特征值和特征向量-1(幂法)
#include <stdio.h>
#include <math.h>
#include <stdlib.h>
#define M 3 //方阵的行数 列数
#define ε0 0.00000001//ε0为要求的精度
#define N 100000//最大迭代次数 //函数预声明
void printMatrix(double a[][], int m, int n);//矩阵的打印
void printVector(double a[], int m);//向量的打印
double dotVector(double a[], double b[], int m);//两个一维向量之积,结果为一个数
void dotMatrVect(double a[][], double yk0[], double uk1[], int m);//矩阵和向量点积u=a.*y,yk0对应于书上y(k-1)
void unitVector(double a[], int η, int m);//向量的单位化
double relaError(double lamada1, double lamada2);//计算相对误差 //主函数
int main(void)
{
double a[M][M] = { { , -, }, { -, -, }, { -, -, } };//待求特征值和特征向量的矩阵
double uk0[M] = { 1.0, 0.0, 0.0 };//迭代向量
double uk1[M] = { 0.0, 0.0, 0.0 };//迭代向量
double β0 = 0.0;//β(k-1)
double β1 = 0.0;//βk
double η0 = 0.0;//向量u(k-1)的二范数
double ε = 0.0;//计算的精度
printf("待求特征值和特征向量的矩阵A:\n");
printMatrix(a, M, M);
printf("\n");
printf("初始向量u0:\n");
printVector(uk0, M);
printf("\n");
printf("第几次计算\t\t uk\t\t\t\t yk\t\t βk\n");
for (int i = ; i < N; i++)
{
printf("%d\t", i);//***打印计算次数i
printVector(uk0, M);//***打印uk
printf("|");//***打印分隔
η0 = sqrt(dotVector(uk0, uk0, M));//初始向量u0的2范数
unitVector(uk0, η0, M);//将初始向量u0单位化作为y(k-1)也就是yk0
printVector(uk0, M); //***打印单位化后的uk0,也就是y(k-1)
dotMatrVect(a, uk0, uk1, M);//uk1 = A.*yk0;
printf("|");//***打印分隔
β1 = dotVector(uk0, uk1, M);//β1=y(k-1).*uk1
if (i>)
{
printf("%lf ", β1);//***打印βk
}
printf("\n");
ε = relaError(β0, β1);
//判断是否收敛
if (ε < ε0) //若收敛
{
printf("收敛\n");
break;
}
else //若不收敛,则变量交换 uk0=uk1;
{
//double tem = 0.0;
for (int q = ; q < M; q++)
{
//uk0[q] = uk1[q];
//tem = uk0[q];
uk0[q] = uk1[q];
uk1[q] = 0.0;//在第二次使用前一定把uk1[i]的所有元素归零!!!!!!
}
β0 = β1;
}
} system("pause");
} //函数具体执行 //矩阵的打印
void printMatrix(double a[][M], int m, int n)
{
for (int i = ; i<m; i++)
{
for (int j = ; j<n; j++)
{
printf("%lf ", a[i][j]);
}
printf("\n");
}
}
//向量的打印
void printVector(double a[], int m)
{
for (int i = ; i < m; i++)
{
printf("%lf ", a[i]);
}
}
//两个一维向量之积
double dotVector(double a[], double b[], int m)
{
double dotsum = 0.0;
for (int i = ; i < m; i++)
{
dotsum = dotsum + a[i] * b[i];
}
return(dotsum);
}
//矩阵和向量点积u=a.*y,yk0对应于书上y(k-1)
void dotMatrVect(double a[][M], double yk0[], double uk1[], int m)
{
double a1, b, c;
for (int i = ; i < m; i++)
{
uk1[i] = ;//在第二次使用前一定把uk1[i]的所有元素归零!!!!!!
for (int j = ; j < m; j++)
{
uk1[i] = uk1[i] + a[i][j] * yk0[j];//在第二次使用前一定把uk1[i]的所有元素归零!!!!!!!!!
a1 = a[i][j];
b = yk0[j];
c = uk1[i];
//printf("a[%d][%d]=%lf\n",i,j,a[i][j]);
} }
//printVector(uk1, 3);
}
//向量的单位化
void unitVector(double a[], int η, int m)
{
for (int i = ; i < m; i++)
{
a[i] = a[i] / η;
}
}
//计算误差
double relaError(double β1, double β2)
{
double ε;
ε = fabs(β2 - β1) / fabs(β2);
return ε;
}
为啥上面的总是算的不是太精确呢??
奥,因为二范数取的是int类型;
#include <stdio.h>
#include <math.h>
#include <stdlib.h>
#define M 3 //方阵的行数 列数
#define ε0 0.00000001//ε0为要求的精度
#define N 100000//最大迭代次数 //函数预声明
void printMatrix(double a[][], int m, int n);//矩阵的打印
void printVector(double a[], int m);//向量的打印
double dotVector(double a[], double b[], int m);//两个一维向量之积,结果为一个数
void dotMatrVect(double a[][], double yk0[], double uk1[], int m);//矩阵和向量点积u=a.*y,yk0对应于书上y(k-1)
void unitVector(double a[], double η, int m);//向量的单位化
double relaError(double lamada1, double lamada2);//计算相对误差 //主函数
int main(void)
{
double a[M][M] = { { , -, }, { -, -, }, { -, -, } };//待求特征值和特征向量的矩阵
double uk0[M] = { 2.0, 1.0, 6.0 };//迭代向量
double uk1[M] = { 0.0, 0.0, 0.0 };//迭代向量
double β0 = 0.0;//β(k-1)
double β1 = 0.0;//βk
double η0 = 0.0;//向量u(k-1)的二范数
double ε = 0.0;//计算的精度
printf("待求特征值和特征向量的矩阵A:\n");
printMatrix(a, M, M);
printf("\n");
printf("初始向量u0:\n");
printVector(uk0, M);
printf("\n");
printf("第几次计算\t\t uk\t\t\t\t yk\t\t βk\n");
for (int i = ; i < N; i++)
{
printf("%d\t", i);//***打印计算次数i
printVector(uk0, M);//***打印uk
printf("|");//***打印分隔
η0 = sqrt(dotVector(uk0, uk0, M));//初始向量u0的2范数
unitVector(uk0, η0, M);//将初始向量u0单位化作为y(k-1)也就是yk0
printVector(uk0, M); //***打印单位化后的uk0,也就是y(k-1)
dotMatrVect(a, uk0, uk1, M);//uk1 = A.*yk0;
printf("|");//***打印分隔
β1 = dotVector(uk0, uk1, M);//β1=y(k-1).*uk1
if (i>)
{
printf("%lf ", β1);//***打印βk
}
printf("\n");
ε = relaError(β0, β1);
//判断是否收敛
if (ε < ε0) //若收敛
{
printf("收敛\n");
break;
}
else //若不收敛,则变量交换 uk0=uk1;
{
//double tem = 0.0;
for (int q = ; q < M; q++)
{
//uk0[q] = uk1[q];
//tem = uk0[q];
uk0[q] = uk1[q];
uk1[q] = 0.0;//在第二次使用前一定把uk1[i]的所有元素归零!!!!!!
}
β0 = β1;
}
} system("pause");
} //函数具体执行 //矩阵的打印
void printMatrix(double a[][M], int m, int n)
{
for (int i = ; i<m; i++)
{
for (int j = ; j<n; j++)
{
printf("%lf ", a[i][j]);
}
printf("\n");
}
}
//向量的打印
void printVector(double a[], int m)
{
for (int i = ; i < m; i++)
{
printf("%lf ", a[i]);
}
}
//两个一维向量之积
double dotVector(double a[], double b[], int m)
{
double dotsum = 0.0;
for (int i = ; i < m; i++)
{
dotsum = dotsum + a[i] * b[i];
}
return(dotsum);
}
//矩阵和向量点积u=a.*y,yk0对应于书上y(k-1)
void dotMatrVect(double a[][M], double yk0[], double uk1[], int m)
{
double a1, b, c;
for (int i = ; i < m; i++)
{
uk1[i] = ;//在第二次使用前一定把uk1[i]的所有元素归零!!!!!!
for (int j = ; j < m; j++)
{
uk1[i] = uk1[i] + a[i][j] * yk0[j];//在第二次使用前一定把uk1[i]的所有元素归零!!!!!!!!!
a1 = a[i][j];
b = yk0[j];
c = uk1[i];
//printf("a[%d][%d]=%lf\n",i,j,a[i][j]);
} }
//printVector(uk1, 3);
}
//向量的单位化
void unitVector(double a[], double η, int m)
{
for (int i = ; i < m; i++)
{
a[i] = a[i] / η;
}
}
//计算误差
double relaError(double β1, double β2)
{
double ε;
ε = fabs(β2 - β1) / fabs(β2);
return ε;
}

精确结果是 绝对值最大的特征值为45,对应的特征向量为(0,-0.5,-1)
c语言计算矩阵特征值和特征向量-1(幂法)的更多相关文章
- 矩阵的特征值和特征向量的雅克比算法C/C++实现
矩阵的特征值和特征向量是线性代数以及矩阵论中很重要的一个概念.在遥感领域也是经经常使用到.比方多光谱以及高光谱图像的主成分分析要求解波段间协方差矩阵或者相关系数矩阵的特征值和特征向量. 依据普通线性代 ...
- 采用梯度下降优化器(Gradient Descent optimizer)结合禁忌搜索(Tabu Search)求解矩阵的全部特征值和特征向量
[前言] 对于矩阵(Matrix)的特征值(Eigens)求解,采用数值分析(Number Analysis)的方法有一些,我熟知的是针对实对称矩阵(Real Symmetric Matrix)的特征 ...
- (原)使用mkl计算特征值和特征向量
转载请注明出处: http://www.cnblogs.com/darkknightzh/p/5585271.html 参考文档:mkl官方文档 lapack_int LAPACKE_sgeev(in ...
- 利用python做矩阵的简单运算(行列式、特征值、特征向量等的求解)
import numpy as np lis = np.mat([[1,2,3],[3,4,5],[4,5,6]]) print(np.linalg.inv(lis)) # 求矩阵的逆矩阵 [[-1. ...
- python计算平面的法向-利用协方差矩阵求解特征值和特征向量
Obvious,最小特征值对应的特征向量为平面的法向 这个问题还有个关键是通过python求协方差矩阵的特征值和特征向量,np.linalg.eig()方法直接返回了特征值的向量和特征向量的矩阵 sc ...
- java语言编写矩阵的四则运算
题目要求如下: 设计程序实现矩阵的四则运算 设计要求: (1) 实现矩阵的四则运算. (2) 考虑实现带变元的矩阵计算. (3)考虑实现矩阵的特征值和特征向量的计算. 我使用java语言写的 目录结构 ...
- opencv学习之路(38)、Mat像素统计基础——均值,标准差,协方差;特征值,特征向量
本文部分内容转自 https://www.cnblogs.com/chaosimple/p/3182157.html 一.统计学概念 二.为什么需要协方差 三.协方差矩阵 注:上述协方差矩阵还需要除以 ...
- eig()函数求特征值、特征向量、归一化
在MATLAB中,计算矩阵A的特征值和特征向量的函数是eig(A),常用的调用格式有 5种:(1) E=eig(A):求矩阵A的全部特征值,构成向量E. 想求最大特征值用:max(eig(A))就好了 ...
- Python与矩阵论——特征值与特征向量
Python计算特征值与特征向量案例 例子1 import numpy as np A = np.array([[3,-1],[-1,3]]) print('打印A:\n{}'.format(A)) ...
随机推荐
- 被滥用的for in循环
众所周知,javascript中有两种for循环,一种是: var a=['this','is','a','article'], i, len; for( i = 0,len = a.length;i ...
- python 01
注意Python 是大小写敏感的,即print 与Print 不一样 推荐编辑器 vim & sublime 如何运行 #!/usr/bin/python#Filename: hellowor ...
- servlet学习笔记_2
一.Servlet线程安全问题1.servlet的线程安全问题.servlet引擎采用多线程的模式运行,它为并发的每个访问请求都预备一个线程来相应,但是由于只有一个servlet对象,因此,如果多个线 ...
- A*算法 -- 八数码问题和传教士过河问题的代码实现
前段时间人工智能的课介绍到A*算法,于是便去了解了一下,然后试着用这个算法去解决经典的八数码问题,一开始写用了挺久时间的,后来试着把算法的框架抽离出来,编写成一个通用的算法模板,这样子如果以后需要用到 ...
- ROS学习笔记(一)——软件版本的选择
下面是Google的SLAM系统Cartographer对系统的要求: Cartographer对ROS版本要求: ROS Indigo 对Ubantu 的版本要求: 所以,综上所述: Ubantu ...
- C3P0的两种使用方法
方法一: package C3P0; import java.sql.Connection; import java.sql.SQLException; import java.bea ...
- 用原生js获取class
<!DOCTYPE html> <html> <head> <meta http-equiv="Content-Type" content ...
- 如何在VISIO 2010/2013 中关闭Shape protection(图形保护)
最近在画UML图,用到MS visio 2010, 在使用一些网络查找到的图形的时候发现无法编辑,在网上找了找,翻译了下. Visio 2013 的图形保护功能,可以锁定图形的某些特定属性,使其无法被 ...
- caffe安装过程中遇到的问题以及解决方法
1. 在安装依赖库的时候,遇到: @gxjun-Latitude-E5440:~$ sudo apt-get install libatlas-base-dev 正在读取软件包列表... 完成 正在分 ...
- Ajax_showHint() 函数
showHint() 函数实现的功能是:当用户在输入框中键入字符时,网页如何与 web 服务器进行通信,完整的代码如下: <html><head><script type ...