秋招刚结束,这俩月没事就学习下斯坦福大学公开课,想学习一下深度学习(这年头不会DL,都不敢说自己懂机器学习),目前学到了神经网络部分,学习起来有点吃力,把之前学的BP(back-progagation)神经网络复习一遍加深记忆。看了许多文章发现一PPT上面写的很清晰,就搬运过来,废话不多说,直入正题:

单个神经元

  神经网络是由多个“神经元”组成,单个神经元如下图所示:

  这其实就是一个单层感知机,输入是由ξ1 ,ξ2 ,ξ3和Θ组成的向量。其中Θ为偏置(bias),σ为激活函数(transfer function),本文采用的是sigmoid函数,功能与阶梯函数(step function)相似控制设神经元的输出,它的优点是连续可导。

是神经元的输出,结果为

可以看得出这个“神经元”的输入-输出映射其实就是一个逻辑回归,常用的激活函数还有双曲正切函数 。

激活函数

sigmoid:函数

取值范围为[0,1],它的图像如下:

求导结果为:

tanh函数:

取值范围为[-1,1],图像如下:

求导数结果为。本文采用的是sigmoid函数作为激活函数。

神经网络模型

神经网络将许多“神经元”联结在一起,一个神经元的输出可以是另一个“神经元”的输入,神经元之间的传递需要乘法上两个神经元对应的权重,下图就是一个简单的神经网络:

这是一个三层的神经网络,使用圆圈来表示神经元的输入,“+1”被称为偏置节点,从左到右依次为输入层、隐藏层和输出层,从图中可以看出,有3个输入节点、3个隐藏节点和一个输出单元(偏置不接受输入)。

本例神经网络的参数有,其中 是第l层第 j 单元与 l+1层第   单元之间的联接参数,即:节点连线的权重,本图中 是第l+1 层第i单元的偏置项。

向前传播

  机器学习(有监督)的任务无非是损失函数最小化,BP神经网络的原理是前向传播得到目标值(分类),再通过后向传播对data loss进行优化求出参数。可见最优化部分

   表示 层第  单元激活值(输出值)。当  时,  ,也就是第  个输入值。对于给定参数集  , 来表示神经网络最后计算输出的结果。上图神经网络计算步骤如下:

可以看出,神经网络的核心思想是这一层的输出乘上相应的权重加上偏置,带入激活函数后的输出又是下一层的输入。用  表示第层第 单元输入加权和 ,则 。使用向量化表示方法表示,上面的公式可以简写为:

这些计算步骤就是前向传播,将计算过程进行推广,给定第  层的激活值 ,第 层的激活值的计算过程为:

反向传播

在前向传播中,我们得到了神经网络的预测值,这时候可以通过反向传播的方法计算出参数

符号定义

:第l层第j个节点的输入。

:从第l-1层第i个节点到第l层第j个节点的权值。

:Sigmoid激活函数。

::第l层第j个节点的偏置。

::第l层第j个节点的输出。

::输出层第j个节点的目标值(label)。

使用梯度下降的方法求解参数,在求解的过程中需要对输出层和隐藏层分开计算

输出层权重计算

  给定样本标签和模型输出结果,输出层的损失函数为:

这其实就是均方差项,训练的目标是最小化该误差,使用梯度下降方法进行优化,对上式子对权重W进行求导:

,整理

其中=带入,对sigmoid求导得:

输出层第k个节点的输入等于上一层第j个节点的输出乘上,即=,而上一层的输出与输出层的权重变量无关,可以看做一个常数,所以直接求导可以得到:

所以将=带入式子中就得到:

为了方便表示将上式子记作:

其中:

隐藏层权重计算

采用同样方法对隐藏层的权重进行计算,与前面不同的是关于隐藏层和前一层权重的调整

整理

替换sigmoid函数

对sigmoid求导

带入进去,使用求导的链式法则:

输出层的输入等于上一层的输入乘以相应的权重,即:于是得到

进行求导(=,同样适用于j),

同输出层计算的方法一样,再次利用,j换成i,k换成j同样成立,带入进去:

整理,得到:

其中:

我们还可以仿照的定义来定义一个,得到:

其中:

偏置调整

  从上面的计算步骤中可以看出:例如,偏置节点是不存在对应的权值参数,也就是不存在关于权值变量的偏导数。

对偏置直接求导:

又有

得到:

,其中:

BP算法步骤

1. 随机初始化W和b,需要注意的是,随机初始化并是不是全部置为0,如果所有参数都是用相同的值初始化,那么所有隐藏单元最终会得到与输入值相关、相同的函数(也就是说,对于所有 都会取相同的值,那么对于任何输入  都会有: ),随机初始化的目的是使对称失效

2.对每个输出节点按照这个公式计算delta:

3.对每个隐藏节点按照这个公式计算delta:

4.更新W和b的公式为:

并更新参数,这里的η是学习率。

Reference

1.反向传播神经网络极简入门

2.反向传导算法

BP神经网络的更多相关文章

  1. BP神经网络原理及python实现

    [废话外传]:终于要讲神经网络了,这个让我踏进机器学习大门,让我读研,改变我人生命运的四个字!话说那么一天,我在乱点百度,看到了这样的内容: 看到这么高大上,这么牛逼的定义,怎么能不让我这个技术宅男心 ...

  2. 数据挖掘系列(9)——BP神经网络算法与实践

    神经网络曾经很火,有过一段低迷期,现在因为深度学习的原因继续火起来了.神经网络有很多种:前向传输网络.反向传输网络.递归神经网络.卷积神经网络等.本文介绍基本的反向传输神经网络(Backpropaga ...

  3. BP神经网络推导过程详解

    BP算法是一种最有效的多层神经网络学习方法,其主要特点是信号前向传递,而误差后向传播,通过不断调节网络权重值,使得网络的最终输出与期望输出尽可能接近,以达到训练的目的. 一.多层神经网络结构及其描述 ...

  4. 极简反传(BP)神经网络

    一.两层神经网络(感知机) import numpy as np '''极简两层反传(BP)神经网络''' # 样本 X = np.array([[0,0,1],[0,1,1],[1,0,1],[1, ...

  5.  BP神经网络

     BP神经网络基本原理 BP神经网络是一种单向传播的多层前向网络,具有三层或多层以上的神经网络结构,其中包含输入层.隐含层和输出层的三层网络应用最为普遍. 网络中的上下层之间实现全连接,而每层神经元之 ...

  6. BP神经网络学习笔记_附源代码

    BP神经网络基本原理: 误差逆传播(back propagation, BP)算法是一种计算单个权值变化引起网络性能变化的较为简单的方法.由于BP算法过程包含从输出节点开始,反向地向第一隐含层(即最接 ...

  7. 机器学习(一):梯度下降、神经网络、BP神经网络

    这几天围绕论文A Neural Probability Language Model 看了一些周边资料,如神经网络.梯度下降算法,然后顺便又延伸温习了一下线性代数.概率论以及求导.总的来说,学到不少知 ...

  8. 基于Storm 分布式BP神经网络,将神经网络做成实时分布式架构

    将神经网络做成实时分布式架构: Storm 分布式BP神经网络:    http://bbs.csdn.net/topics/390717623 流式大数据处理的三种框架:Storm,Spark和Sa ...

  9. BP神经网络算法学习

    BP(Back Propagation)网络是1986年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是眼下应用最广泛的神经网络模型之中的一个 ...

随机推荐

  1. C++中的字面值指定类型

    C++中只有内置类型存在字面值,没有类(class)类型字面值.例如:0是int类型的字面值,3.14159是double类型的字面值. 字面值类型很多 整型浮点字面值 20             ...

  2. Calculator(1.0)

    Calculator(1.0) Github链接 解题过程中遇到的困难 对于c++中类和对象的使用不够明确,看了c++的视频教程学会了用类和对象来写程序. 不会使用<queue>,在网上查 ...

  3. java打jar包,引用其他.jar文件

    大家都知道一个java应用项目可以打包成一个jar,当然你必须指定一个拥有main函数的main class作为你这个jar包的程序入口. 具体的方法是修改jar包内目录META-INF下的MANIF ...

  4. jqzoom与scrollpic配合的问题

    <script type="text/javascript"> //以下两个方法的执行顺序不能互换,否则zoom方法的单击缩略图事件会失效 if (document.a ...

  5. php文件上传参考配置与大文件上传

      PHP用超级全局变量数组$_FILES来记录文件上传相关信息的,在php文件上传之前,可通过调节php.ini中相关配置指令,来控制上传相关细节. 1.file_uploads=on/off   ...

  6. sql返回两个日期之间的日期_函数实现

    -- Description:返回两段日期之间的所有日期    <Description,,>-- ============================================ ...

  7. 通过Request对象对cookie的设置、获取

    <html> <head></head> <body> <% request.setCharacterEncoding("UTF-8&q ...

  8. Git典型使用场景

    1. 在本地创建版本库(把本地的一个目录内的文件纳入版本库管理,方便查看变动历史,恢复版本等.不限于代码,可以是笔记等所有需要追踪历史的文件.) git init -- 把当前目录初始化为版本库 2. ...

  9. C语言的编译过程、安装gcc编译器以及设置环境变量

    以我对C语言编译过程的了解,我用了一点时间画了一个图,提供给大家参考一下,希望有些能对您的问题提上帮助. 前几天刚初步学习了C语言的编译过程,感触挺深的.在C语言中头文件其实起了一个很大的作用. 1. ...

  10. sql server数据库连接问题处理

    下面请一字一句地看,一遍就设置成功,比你设置几十遍失败,费时会少得多. 首先,在连接数据库之前必须保证SQL Server 2012是采用SQL Server身份验证方式而不是windows身份验证方 ...