https://www.cnblogs.com/31415926535x/p/11447033.html

曾今一时的懒,造就今日的泪

记得半年前去武大参加的省赛,当时的A题就是一个广义欧拉降幂的板子题,后来回来补了一下,因为没有交的地方,于是就测了数据就把代码扔了,,,然后,,昨天的南京网络赛就炸了,,,一样的广义欧拉降幂的板子题,,然后因为忘记了当初自己想出来的那中写法,,一直想着回想起之前的写法,,然后到结束都没弄出来,,,emmmm,,

赛后看了一下别人的解法,,别人的处理方法很巧妙,,当然另一个种返回两个值的(pair)的解法就是武大的标程,,,,(到最后之前想出的写法还是每能推出来,,都开始怀疑自己当时有没有真的推出来,,,,,

思路

广义欧拉降幂没啥好说的,,就是那个公式:

$$
对于求 a^b(mod  p)可以转换为:

a^b = \begin{cases}
    a^{b \%  \phi (p)}   &gcd(a, p)=1 \\
    a^b &gcd(a, p) \neq 1, b < \phi (p) \\
    a^{b \% \phi (p) + \phi (p)} &gcd(a, p) \neq 1, b \ge \phi (p)
\end{cases}

$$

公式很简单,,但是如果是求 \(a_1^{a_2^{a_3^{...}}} (mod \ p)\) 类似这样的值的话,显然要递归从上往下求(刚开始弄成了从下往上求,,口胡了一段时间,,,,),,但是再递归求的时候要考虑每一次 \(b\) 和 \(\phi (p)\) 的关系,,然后选择哪一个等式,,,这样就麻烦了,,可以用一个 pair 什么的来保存一个标志变量来决定递归的上一层要不要 \(+ \phi (p)\) ,,另一种巧妙地方式是修改一下 取模 的过程,,这样就不用考虑了,,,具体的推导过程在这里

所有的取模的步骤改成这样:

inline ll modulo(ll x, ll mod){return x < mod ? x : x % mod + mod;}

这样保证 \(b \ge \phi (p)\),,然后就少了判断的情况

题目

南京网络赛B supper_log

南京网络赛B supper_log

这道题按题目的意思推几项样例就能看出是要求一个 \(a^{a^{a^{a^{...}}}} mod \ m (一共有b个a)\) 的值,,直接降幂求就可以了,, 记得特判 b=0 的情况

代码

群里很多大佬用的方法,重置取模的流程

#include <bits/stdc++.h>
#define aaa cout<<233<<endl;
#define endl '\n'
#define pb push_back
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef long double ld;
// mt19937 rnd(time(0));
const int inf = 0x3f3f3f3f;//1061109567 > 1e9
const ll linf = 0x3f3f3f3f3f3f3f3f;
const double eps = 1e-7;
const double pi = 3.14159265358979;
const int maxn = 1e3 + 5;
const int maxm = 1e3 + 5;
const int mod = 1e9 + 7;

ll f(ll x, ll a)
{
    if(x < 1)return -1;
    return 1 + f((ll)(log(x) / log(a)), a);
}

inline ll modulo(ll x, ll mod){return x < mod ? x : x % mod + mod;}
inline ll pow_(ll a, ll b, ll p)
{
    ll ret = 1;
    while(b)
    {
        if(b & 1)ret = modulo(ret * a, p);
        a = modulo(a * a, p);
        b >>= 1;
    }
    return ret;
}
inline ll phi(ll x)
{
    ll ans = x;
    for(ll i = 2; i * i <= x; ++i)
    {
        if(x % i == 0)
        {
            ans = ans / i * (i - 1);
            while(x % i == 0)x /= i;
        }
    }
    if(x > 1)ans = ans / x * (x - 1);
    return ans;
}
ll gcd(ll a, ll b)
{
    if(b == 0)return a;
    return gcd(b, a % b);
}
ll f(ll a, ll b, ll k, ll p)
{
    if(p == 1)return 1;
    if(k == 0)return 1;
    return pow_(a, f(a, a, k - 1, phi(p)), p);
}

int main()
{
    // double pp = clock();
    // freopen("233.in", "r", stdin);
    // freopen("233.out", "w", stdout);
    // ios_base::sync_with_stdio(0);
    // cin.tie(0);cout.tie(0);

    int t; cin >> t;
    while(t--)
    {
        ll a, b, m;
        cin >> a >> b >> m;
        // cout << a << b << m << endl;
        if(b == 0)
        {
            cout << 1 % m << endl;
            continue;
        }
        ll ans = f(a, a, b, m) % m;
        // if(a == 1)ans = 1 % m;
        // cout << ans << " " << ans % m << endl;
        cout << ans << endl;
    }

    // cout << endl << (clock() - pp) / CLOCKS_PER_SEC << endl;
    return 0;
}

pair记录上一层

武大那场的标程,,直接改了下输入,,

#include <bits/stdc++.h>
using namespace std;
#define ll long long
const int N = 1000010;
int prime[N + 1], isprime[N + 1];
int tot, phi[N + 1];
struct P
{
    ll ans;
    bool v;
    P(ll _ans, bool _v)
    {
        ans = _ans;
        v = _v;
    }
};
ll gcd(ll a, ll b)
{
    return b ? gcd(b, a % b) : a;
}
P qpow(ll A, ll B, ll C)
{
    ll re = 1;
    bool flag = 1;
    while (B)
    {
        if (B & 1)
        {
            if ((re *= A) >= C)
                flag = 0;
            re = re % C;
        }
        B = B >> 1;
        if (B)
        {
            if (A >= C)
                flag = 0;
            A %= C;
            if ((A *= A) >= C)
                flag = 0;
            A %= C;
        }
    }
    return P(re, flag);
}
void getphi()
{
    phi[1] = 1;
    isprime[1] = 1;
    for (int i = 2; i <= N; i++)
    {
        if (!isprime[i])
        {
            prime[++tot] = i;
            phi[i] = i - 1;
        }
        for (int j = 1; j <= tot && i * prime[j] <= N; j++)
        {
            isprime[i * prime[j]] = 1;
            if (i % prime[j] == 0)
            {
                phi[i * prime[j]] = phi[i] * prime[j];
                break;
            }
            else
                phi[i * prime[j]] = phi[i] * phi[prime[j]];
        }
    }
}
inline ll Euler(ll x)
{
    return phi[x];
    //题目可以再复杂一点模数可以到longlong
    // ll ans = x;
    // for (int i = 1; i <= tot && prime[i] * prime[i] <= x; i++)
    // {
    //     if (x % prime[i] == 0)
    //     {
    //         ans = ans / prime[i] * (prime[i] - 1);
    //         while (x % prime[i] == 0)
    //             x /= prime[i];
    //     }
    // }
    // if (x > 1)
    //     ans = ans / x * (x - 1);
    // return ans;
}
P f(ll a, ll b, ll k, ll p)
{
    if (p == 1)
        return P(0, 0);
    if (k == 0)
        return P(a % p, a < p);
    ll ep = Euler(p);
    P tmp = f(b, b, k - 1, ep);
    if (gcd(a, p) == 1)
        return qpow(a, tmp.ans, p);
    if (tmp.v == false)
    {
        tmp.ans += ep;
    }
    return qpow(a, tmp.ans, p);
}
int main()
{
    //double pp = clock();
    // freopen("233.in", "r", stdin);
    // freopen("233.out", "w", stdout);
    ll a, b, k, p;
    getphi();
    int t;
    while (~scanf("%d", &t))
    {
        while (t--)
        {
            scanf("%lld %lld %lld", &a, &k, &p);
            b = a;
            if(k == 0)
            {
                printf("%lld\n", 1 % p);
                continue;
            }
            printf("%lld\n", f(a, b, k - 1, p).ans);
        }
    }
    //cout<<(clock()-pp)/CLOCKS_PER_SEC;
    return 0;
}

cf-906 D. Power Tower

cf-906 D. Power Tower

突然很多人交这道两年前的题啊,,hhhhh

这题也是降幂,他是求的一个指数序列的一个区间的幂的值,,,套路一样,,就是这个模数很大,,不能每次都算他的 phi ,,不然会超时,,所以要记忆化一下 unordered_map 一下,,或者 预处理一下模数的所有phi 因为对一个数一直求 phi 下去,,其实个数不多,,,

#include <bits/stdc++.h>
#define aaa cout<<233<<endl;
#define endl '\n'
#define pb push_back
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef long double ld;
// mt19937 rnd(time(0));
const int inf = 0x3f3f3f3f;//1061109567 > 1e9
const ll linf = 0x3f3f3f3f3f3f3f3f;
const double eps = 1e-7;
const double pi = 3.14159265358979;
const int maxn = 1e5 + 5;
const int maxm = 1e3 + 5;
const int mod = 1e9 + 7;

ll a[maxn];

inline ll modulo(ll x, ll mod){return x < mod ? x : x % mod + mod;}
inline ll pow_(ll a, ll b, ll p)
{
    ll ret = 1;
    while(b)
    {
        if(b & 1)ret = modulo(ret * a, p);
        a = modulo(a * a, p);
        b >>= 1;
    }
    return ret;
}
unordered_map<ll, ll> phi_;
inline ll phi(ll x)
{
    if(phi_[x])return phi_[x];
    ll ans = x;
    ll t = x;
    for(ll i = 2; i * i <= x; ++i)
    {
        if(x % i == 0)
        {
            ans = ans / i * (i - 1);
            while(x % i == 0)x /= i;
        }
    }
    if(x > 1)ans = ans / x * (x - 1);
    phi_[t] = ans;
    return ans;
}
//这里根据题意来更改,k表示共有k个指数
ll f(ll a, ll b, ll k, ll p)
{
    if(p == 1)return 1;
    if(k == 0)return 1;
    return pow_(a, f(a, a, k - 1, phi(p)), p);
}
ll f(ll l, ll r, ll p)
{
    if(p == 1)return 1;
    if(l == r + 1)return 1;
    return pow_(a[l], f(l + 1, r, phi(p)), p);
}

int main()
{
    // double pp = clock();
    // freopen("233.in", "r", stdin);
    // freopen("233.out", "w", stdout);
    ios_base::sync_with_stdio(0);
    cin.tie(0);cout.tie(0);

    ll n, m;
    cin >> n >> m;
    for(int i = 1; i <= n; ++i)cin >> a[i];
    int q; cin >> q;
    while(q--)
    {
        ll l, r; cin >> l >> r;
        cout << f(l, r, m) % m << endl;
    }

    // cout << endl << (clock() - pp) / CLOCKS_PER_SEC << endl;
    return 0;
}

cf-gym-101550 E Exponial

cf-gym-101550 E Exponial

这题是求一个 \(n^{{n-1}^{{n-2}^{{n-3}^{{...}^{1}}}}} mod \ p\) ,,,用上面的板子改一改就可以了,,,

#include <bits/stdc++.h>
#define aaa cout<<233<<endl;
#define endl '\n'
#define pb push_back
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef long double ld;
// mt19937 rnd(time(0));
const int inf = 0x3f3f3f3f;//1061109567 > 1e9
const ll linf = 0x3f3f3f3f3f3f3f3f;
const double eps = 1e-7;
const double pi = 3.14159265358979;
const int maxn = 1e5 + 5;
const int maxm = 1e3 + 5;
const int mod = 1e9 + 7;

inline ll modulo(ll x, ll mod){return x < mod ? x : x % mod + mod;}
inline ll pow_(ll a, ll b, ll p)
{
    ll ret = 1;
    while(b)
    {
        if(b & 1)ret = modulo(ret * a, p);
        a = modulo(a * a, p);
        b >>= 1;
    }
    return ret;
}
unordered_map<ll, ll> phi_;
inline ll phi(ll x)
{
    if(phi_[x])return phi_[x];
    ll ans = x;
    ll t = x;
    for(ll i = 2; i * i <= x; ++i)
    {
        if(x % i == 0)
        {
            ans = ans / i * (i - 1);
            while(x % i == 0)x /= i;
        }
    }
    if(x > 1)ans = ans / x * (x - 1);
    phi_[t] = ans;
    return ans;
}

// ll f(ll l, ll r, ll p)
// {
//     if(p == 1)return 1;
//     if(l == r + 1)return 1;
//     return pow_(a[l], f(l + 1, r, phi(p)), p);
// }

ll f(ll a, ll p)
{
    if(p == 1)return 1;
    if(a == 1)return 1;
    return pow_(a, f(a - 1, phi(p)), p);
}

int main()
{
    // double pp = clock();
    // freopen("233.in", "r", stdin);
    // freopen("233.out", "w", stdout);
    ios_base::sync_with_stdio(0);
    cin.tie(0);cout.tie(0);

    ll n, m;
    while(cin >> n >> m)cout << f(n, m) % m << endl;

    // cout << endl << (clock() - pp) / CLOCKS_PER_SEC << endl;
    return 0;
}

貌似够了,,,数论是最不想碰的东西,,emmmm,,,但又时不得不稍稍掌握的东西,,,,

(end....)

ACM-数论-广义欧拉降幂的更多相关文章

  1. Power Tower(广义欧拉降幂)

    题意:https://codeforc.es/contest/906/problem/D 计算区间的: ai ^ ai+1 ^ ai+2.......ar . 思路: 广义欧拉降幂: 注意是自下而上递 ...

  2. 广义欧拉降幂(欧拉定理)——bzoj3884,fzu1759

    广义欧拉降幂对于狭义欧拉降幂任然适用 https://blog.csdn.net/qq_37632935/article/details/81264965?tdsourcetag=s_pctim_ai ...

  3. Codeforces Round #454 D. Power Tower (广义欧拉降幂)

    D. Power Tower time limit per test 4.5 seconds memory limit per test 256 megabytes input standard in ...

  4. The Preliminary Contest for ICPC Asia Nanjing 2019 B. super_log (广义欧拉降幂)

    In Complexity theory, some functions are nearly O(1)O(1), but it is greater then O(1)O(1). For examp ...

  5. BZOJ 3884——欧拉降幂和广义欧拉降幂

    理论部分 欧拉定理:若 $a,n$ 为正整数,且 $a,n$ 互质,则 $a^{\varphi (n)} \equiv 1(mod \ n)$. 降幂公式: $$a^b=\begin{cases}a^ ...

  6. Codeforces Round #454 (Div. 1) CodeForces 906D Power Tower (欧拉降幂)

    题目链接:http://codeforces.com/contest/906/problem/D 题目大意:给定n个整数w[1],w[2],……,w[n],和一个数m,然后有q个询问,每个询问给出一个 ...

  7. 2018牛客网暑期ACM多校训练营(第四场) A - Ternary String - [欧拉降幂公式][扩展欧拉定理]

    题目链接:https://www.nowcoder.com/acm/contest/142/A 题目描述 A ternary string is a sequence of digits, where ...

  8. 数学--数论--欧拉降幂--P5091 欧拉定理

    题目背景 出题人也想写有趣的题面,可惜并没有能力. 题目描述 给你三个正整数,a,m,ba,m,ba,m,b,你需要求:ab mod ma^b \bmod mabmodm 输入格式 一行三个整数,a, ...

  9. hdu 1286:找新朋友(数论,欧拉函数)

    找新朋友 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submis ...

随机推荐

  1. SSD+HDD 安装ubuntu16.04+win7双系统

    本人电脑是联想天逸100  前段时间把光驱拆了加了一个128G的SSD 顺便把SSD装上了win7  机械硬盘500G放资料和一般软件之类的   后来想要用到ubuntu  就在官网下载ubuntu1 ...

  2. Consul和Kong的实践(一)

    Consul和Kong的实践(一) 这一篇先介绍consul集群,以及consul和应用服务的结合使用,下一篇是和kong网关的结合. 一.Consul的集群安装 以其中一台机器为例: mkdir / ...

  3. 手机APP测试之Fiddler

    之前测试基本上是web端,突然接手了一个要在指定pad上测试APP的任务,于是决定研究研究pad抓包.最开始考虑有jmeter进行抓包测试,发现抓不到(可能方法有问题,后续还需继续研究),然后用fid ...

  4. C#打开并选择特定类型文件并返回文件名

    public string[] GetOpenFileDialogReturnFileFullName(bool multiSelect = false)         {             ...

  5. CEPH 自动化测试用例介绍

    1.QA 的内部逻辑关系. 首先用一个图表示一下QA的内部的逻辑关系. 2.QA的脚本介绍 3.QA脚本运行

  6. Qt实现表格树控件-自绘树节点虚线

    目录 一.开心一刻 二.自绘树节点? 三.效果展示 四.实现思路 1.可扩展接口 2.函数重写 3.同步左侧表头 五.相关文章 原文链接:Qt实现表格树控件-自绘树节点虚线 一.开心一刻 一程序员第一 ...

  7. C#使用WebClient调用接口

    用于上传图片base64位 private void upLoadCunzai() { errorstring += " upLoadCunzai方法执行成功:用于上传已经存在人员摄像头照片 ...

  8. Linux故障处理最佳实践

    引言 业务中断了! 老板咆哮,主管抓狂,而你就是那个要去处理故障.恢复业务的不幸的人. 你独自一人在阴暗的隔间里.北边是老板的办公室,西边是Team Leader的办公室,南面是茶水间,在那你能泡上一 ...

  9. ZOJ 3408 Gao

    ZOJ题目页面传送门 给定一个有向图\(G=(V,E),n=|V|,m=|E|\)(可能有重边和自环,节点从\(0\)开始编号),以及\(q\)组询问,对于每组询问你需要回答有多少条从节点\(0\)开 ...

  10. Cause: java.lang.NumberFormatException: For input string: "D"

    异常:Cause: java.lang.NumberFormatException: For input string: "D" 问题回显: 原因分析:'D'只有1位,被认为是ch ...