kafka消息分发策略分析
当我们使用kafka向指定Topic发送消息时,如果该Topic具有多个partition,无论消费者有多少,最终都会保证一个partition内的消息只会被一个Consumer group中的一个Consumer消费,也就是说同一Consumer group中的多个Consumer自动会起到负载均衡的效果。
1、消息构造
下面我们就针对调用kafka API发送消息到Topic时partition的分配策略,分析下其内部具体的源码码实现。
首先看下kafka API中消息体ProducerRecord类的构造函数,可以看到构造消息时可指定该消息要发送的Topic、partition、key、value等关键信息。
/**
* Creates a record to be sent to a specified topic and partition
*
* @param topic The topic the record will be appended to
* @param partition The partition to which the record should be sent
* @param key The key that will be included in the record
* @param value The record contents
* @param headers The headers that will be included in the record
*/
public ProducerRecord(String topic, Integer partition, K key, V value, Iterable<Header> headers) {
this(topic, partition, null, key, value, headers);
} /**
* Creates a record to be sent to a specified topic and partition
*
* @param topic The topic the record will be appended to
* @param partition The partition to which the record should be sent
* @param key The key that will be included in the record
* @param value The record contents
*/
public ProducerRecord(String topic, Integer partition, K key, V value) {
this(topic, partition, null, key, value, null);
} /**
* Create a record to be sent to Kafka
*
* @param topic The topic the record will be appended to
* @param key The key that will be included in the record
* @param value The record contents
*/
public ProducerRecord(String topic, K key, V value) {
this(topic, null, null, key, value, null);
}
2、分发策略
在实际使用中,我们一般不会指定消息发送的具体partition,最多只会传入key值,类似下面这种方式:
producer.send(new ProducerRecord<Object, Object>(topic, key, data));
而kafka也会根据你传入key的hash值,通过取余的方法,尽可能保证消息能够相对均匀的分摊到每个可用的partition上;
下面是kafka内部默认的分发策略:
public class DefaultPartitioner implements Partitioner {
private final ConcurrentMap<String, AtomicInteger> topicCounterMap = new ConcurrentHashMap<>();
public void configure(Map<String, ?> configs) {}
/**
* Compute the partition for the given record.
*
* @param topic The topic name
* @param key The key to partition on (or null if no key)
* @param keyBytes serialized key to partition on (or null if no key)
* @param value The value to partition on or null
* @param valueBytes serialized value to partition on or null
* @param cluster The current cluster metadata
*/
public int partition(String topic, Object key, byte[] keyBytes, Object value, byte[] valueBytes, Cluster cluster) {
//获取该topic的分区列表
List<PartitionInfo> partitions = cluster.partitionsForTopic(topic);
int numPartitions = partitions.size();
//如果key值为null
if (keyBytes == null) {
//维护一个key为topic的ConcurrentHashMap,并通过CAS操作的方式对value值执行递增+1操作
int nextValue = nextValue(topic);
//获取该topic的可用分区列表
List<PartitionInfo> availablePartitions = cluster.availablePartitionsForTopic(topic);
if (availablePartitions.size() > 0) {//如果可用分区大于0
//执行求余操作,保证消息落在可用分区上
int part = Utils.toPositive(nextValue) % availablePartitions.size();
return availablePartitions.get(part).partition();
} else {
// 没有可用分区的话,就给出一个不可用分区
return Utils.toPositive(nextValue) % numPartitions;
}
} else {
// 通过计算key的hash,确定消息分区
return Utils.toPositive(Utils.murmur2(keyBytes)) % numPartitions;
}
}
private int nextValue(String topic) {
//获取一个AtomicInteger对象
AtomicInteger counter = topicCounterMap.get(topic);
if (null == counter) {//如果为空
//生成一个随机数
counter = new AtomicInteger(ThreadLocalRandom.current().nextInt());
//维护到topicCounterMap中
AtomicInteger currentCounter = topicCounterMap.putIfAbsent(topic, counter);
if (currentCounter != null) {
counter = currentCounter;
}
}
//返回值并执行递增
return counter.getAndIncrement();
}
public void close() {}
}
3、自定义负载策略
我们也可以通过实现Partitioner接口,自定义分发策略,看下具体实现
自定义实现Partitioner接口
/**
* 自定义实现Partitioner接口
*
*/
public class KeyPartitioner implements Partitioner { /**
* 实现具体分发策略
*/
@Override
public int partition(String topic, Object key, byte[] bytes, Object o1, byte[] bytes1, Cluster cluster) {
List<PartitionInfo> availablePartitions = cluster.availablePartitionsForTopic(topic);//拉取可用的partition
if (key == null||key.equals("")) {
int random = (int) (Math.random() * 10);
int part = random % availablePartitions.size();
return availablePartitions.get(part).partition();
}
return Math.abs(key.toString().hashCode() % 6);
} @Override
public void configure(Map<String, ?> configs) {
// TODO Auto-generated method stub } @Override
public void close() {
// TODO Auto-generated method stub } }
同时在初始化kafka生产者时,增加自定义配置
Properties properties = new Properties();
properties.put(ProducerConfig.PARTITIONER_CLASS_CONFIG,KeyPartitioner.class); //加入自定义的配置
producer = new KafkaProducer<Object, Object>(properties);
4、总结
以上是对kafka消息分发的策略进行一定的分析与自定义扩展,希望对大家在使用kafka时有所帮助,其中如有不足与不正确的地方还望指出与海涵。
关注微信公众号,查看更多技术文章。

kafka消息分发策略分析的更多相关文章
- RabbitMQ,RocketMQ,Kafka 消息模型对比分析
消息模型 消息队列的演进 消息队列模型 发布订阅模型 RabbitMQ的消息模型 交换器的类型 direct topic fanout headers Kafka的消息模型 RocketMQ的消息模型 ...
- apollo 消息分发源代码分析
1.MessageDispatch消息分发信息 public static final byte DATA_STRUCTURE_TYPE = CommandTypes.MESSAGE_DISPATCH ...
- Kafka分区分配策略分析——重点:StickyAssignor
“ 为什么Kafka在RangeAssigor.RoundRobinAssignor的基础上,又新增了PartitionAssignor,它解决了什么问题?” 背景 用过Kafka的同学应该都知道Ka ...
- Storm 消息分发策略
1.Shuffle Grouping:随机分组,随机派发stream里面的tuple,保证每个bolt接收到的tuple数目相同.2.Fields Grouping:按字段分组,比如按userid来分 ...
- kafka消息的分发与消费
关于 Topic 和 Partition: Topic: 在 kafka 中,topic 是一个存储消息的逻辑概念,可以认为是一个消息集合.每条消息发送到 kafka 集群的消息都有一个类别.物理上来 ...
- Kafka分片存储、消息分发和持久化机制
Kafka 分片存储机制 Broker:消息中间件处理结点,一个 Kafka 节点就是一个 broker,多个 broker 可以组成一个 Kafka集群. Topic:一类消息,例如 page vi ...
- Kafka学习笔记(二):Partition分发策略
kafka版本0.8.2.1 Java客户端版本0.9.0.0 为了更好的实现负载均衡和消息的顺序性,Kafka Producer可以通过分发策略发送给指定的Partition.Kafka保证在par ...
- 源码分析 Kafka 消息发送流程(文末附流程图)
温馨提示:本文基于 Kafka 2.2.1 版本.本文主要是以源码的手段一步一步探究消息发送流程,如果对源码不感兴趣,可以直接跳到文末查看消息发送流程图与消息发送本地缓存存储结构. 从上文 初识 Ka ...
- 源码分析 Kafka 消息发送流程
Futuresend(ProducerRecord<K, V> record) Futuresend(ProducerRecord<K, V> record, Callback ...
随机推荐
- 使用log4j进行日志管理
17.1.Log4j简介 作用: 1. 跟踪代码的运行轨迹. 2. 输出调试信息. 三大组成: 1. Logger类-生成日志. 2. Appender类-定义日志输出的目的地. 3. Layou ...
- Active Directory域
引言 在 Microsoft® Windows® 2000 Server 操作系统的诸多增强功能中,Microsoft Active Directory™ 功能的引入意义最为重大,但也最常引起困惑.与 ...
- Rust生命周期bound用于泛型的引用
在实际编程中,可能会出现泛型引用这种情况,我们会编写如下的代码: struct Inner<'a, T> { data: &'a T, } 会产生编译错误: error[E0309 ...
- js获得页面get跳转的参数
通过js获得页面跳转参数 页面通过window.location.href或通过window.parent.location.href进行页面跳转,在新的页面如何获得相应的参数呢? window.lo ...
- 一文搞懂 Prometheus 的直方图
原文链接:一文搞懂 Prometheus 的直方图 Prometheus 中提供了四种指标类型(参考:Prometheus 的指标类型),其中直方图(Histogram)和摘要(Summary)是最复 ...
- go 学习笔记之走进Goland编辑器
工欲善其事必先利其器,命令行工具虽然能够在一定程度上满足基本操作的需求,但实际工作中总不能一直使用命令行工具进行编码操作吧? 学习 Go 语言同样如此,为此需要寻找一个强大的 IDE 集成环境帮助我们 ...
- JavaWeb——Servlet开发3
1.使用初始化参数配置应用程序 初始化参数的方式有两种 在Web.xml文件中使用<context-param>标签声明上下文初始化参数 <context-param> < ...
- 基于RBAC的权限框架
RBAC权限框架(Role-Based Access Control)基于角色的权限访问控制的框架,通过用户-角色-权限的关联,非常方便的进行权限管理,在这里不再说明什么是RBAC,请自行百度. 谢谢 ...
- canvas 使用图片跨域问题
项目中需要生成海报,使用了前端生成图片的插件,将背景图,详情图,以及部分的文字说明放在一块并且生成一张新的图片,大体看了一下源码是通过canvas来实现的,在本地的时候完全没有问题,提交到服务器之后就 ...
- Java回收机制概述
Java技术体系中所提倡的 自动内存管理 最终可以归结为自动化地解决了两个问题:给对象分配内存 以及 回收分配给对象的内存,而且这两个问题针对的内存区域就是Java内存模型中的 堆区. 垃圾回收机制的 ...