A. PERFECT NUMBER PROBLEM

题目链接:https://nanti.jisuanke.com/t/38220

题意:

输出前五个完美数

分析:

签到。直接百度完美数输出即可

#include<bits/stdc++.h>
#define ios std::ios::sync_with_stdio(false) , std::cin.tie(0) , std::cout.tie(0)
#define sd(n) scanf("%d",&n)
#define sdd(n,m) scanf("%d%d",&n,&m)
#define sddd(n,m,k) scanf("%d%d%d",&n,&m,&k)
#define pd(n) printf("%d\n", (n))
#define pdd(n,m) printf("%d %d\n", n, m)
#define pld(n) printf("%lld\n", n)
#define pldd(n,m) printf("%lld %lld\n", n, m)
#define sld(n) scanf("%lld",&n)
#define sldd(n,m) scanf("%lld%lld",&n,&m)
#define slddd(n,m,k) scanf("%lld%lld%lld",&n,&m,&k)
#define sf(n) scanf("%lf",&n)
#define sff(n,m) scanf("%lf%lf",&n,&m)
#define sfff(n,m,k) scanf("%lf%lf%lf",&n,&m,&k)
#define rep(i,a,n) for (int i=a;i<=n;i++)
#define per(i,n,a) for (int i=n;i>=a;i--)
#define mm(a,n) memset(a, n, sizeof(a))
#define pb push_back
#define all(x) (x).begin(),(x).end()
#define fi first
#define se second
#define ll long long
#define numm ch - 48
#define MOD 1000000007
#define INF 0x3f3f3f3f
#define pi 3.14159265358979323
#define debug(x) cout << #x << ": " << x << endl
#define debug2(x, y) cout <<#x<<": "<<x<<" | "<<#y<<": "<<y<< endl;
#define debug3(x, y, z) cout <<#x<<": "<<x<<" | "<<#y<<": "<<y<<" | "<<#z<<": "<<z<<endl;
#define debug4(a, b, c, d) cout <<#a<<": "<<a<<" | "<<#b<<": "<<b<<" | "<<#c<<": "<<c<<" | "<<#d<<": "<<d<<endl;
using namespace std;
template<typename T>void read(T &res){bool flag=false;char ch;while(!isdigit(ch=getchar()))(ch=='-')&&(flag=true);
for(res=numm;isdigit(ch=getchar());res=(res<<)+(res<<)+numm);flag&&(res=-res);}
template<typename T>void Out(T x){if(x<)putchar('-'),x=-x;if(x>)Out(x/);putchar(x%+'');}
ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
ll lcm(ll a,ll b){return a*b/gcd(a,b);}
ll pow_mod(ll x,ll n,ll mod){ll res=;while(n){if(n&)res=res*x%mod;x=x*x%mod;n>>=;}return res;}
ll fact_pow(ll n,ll p){ll res=;while(n){n/=p;res+=n;}return res;} const int N = 2e5 + ; int main()
{
printf("6\n28\n496\n8128\n33550336\n");
return ;
}

H. Coloring Game

题目链接:https://nanti.jisuanke.com/t/38227

题意:

给你个 2 * N 的网格 , 你有up(), down(), left(), right(), left up(), left down(), right up(), right down () 八个路径走到下一个网格

网格原来是全白色的 , 你每经过一个网格它就会变黑色 (白变黑 , 黑变黑). 要求你从左上角走到右下角 , 问能有多少种不同的配色方案(只要有一处网格颜色不同即为不同方案)

分析:

由于起点和终点固定 , 所以对于第一列和最后一列网格不同配色方案为 2 * 2 = 4 ; 而对于起点与终点之间的网格每一列都只有三种状态(黑白 、 白黑 、 黑黑),所以答案为 4 * 3 ^ (n - 2) % MOD;

快速幂跑一遍。。。

#include<bits/stdc++.h>
#define ios std::ios::sync_with_stdio(false) , std::cin.tie(0) , std::cout.tie(0)
#define sd(n) scanf("%d",&n)
#define sdd(n,m) scanf("%d%d",&n,&m)
#define sddd(n,m,k) scanf("%d%d%d",&n,&m,&k)
#define pd(n) printf("%d\n", (n))
#define pdd(n,m) printf("%d %d\n", n, m)
#define pld(n) printf("%lld\n", n)
#define pldd(n,m) printf("%lld %lld\n", n, m)
#define sld(n) scanf("%lld",&n)
#define sldd(n,m) scanf("%lld%lld",&n,&m)
#define slddd(n,m,k) scanf("%lld%lld%lld",&n,&m,&k)
#define sf(n) scanf("%lf",&n)
#define sff(n,m) scanf("%lf%lf",&n,&m)
#define sfff(n,m,k) scanf("%lf%lf%lf",&n,&m,&k)
#define rep(i,a,n) for (int i=a;i<=n;i++)
#define per(i,n,a) for (int i=n;i>=a;i--)
#define mm(a,n) memset(a, n, sizeof(a))
#define pb push_back
#define all(x) (x).begin(),(x).end()
#define fi first
#define se second
#define ll long long
#define numm ch - 48
#define INF 0x3f3f3f3f
#define MOD 1000000007
#define pi 3.14159265358979323
#define debug(x) cout << #x << ": " << x << endl
#define debug2(x, y) cout <<#x<<": "<<x<<" | "<<#y<<": "<<y<< endl;
#define debug3(x, y, z) cout <<#x<<": "<<x<<" | "<<#y<<": "<<y<<" | "<<#z<<": "<<z<<endl;
#define debug4(a, b, c, d) cout <<#a<<": "<<a<<" | "<<#b<<": "<<b<<" | "<<#c<<": "<<c<<" | "<<#d<<": "<<d<<endl;
using namespace std;
template<typename T>void read(T &res){bool flag=false;char ch;while(!isdigit(ch=getchar()))(ch=='-')&&(flag=true);
for(res=numm;isdigit(ch=getchar());res=(res<<)+(res<<)+numm);flag&&(res=-res);}
template<typename T>void Out(T x){if(x<)putchar('-'),x=-x;if(x>)Out(x/);putchar(x%+'');}
ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
ll lcm(ll a,ll b){return a*b/gcd(a,b);}
ll pow_mod(ll x,ll n,ll mod){ll res=;while(n){if(n&)res=res*x%mod;x=x*x%mod;n>>=;}return res;}
ll fact_pow(ll n,ll p){ll res=;while(n){n/=p;res+=n;}return res;} const int N = 2e5 + ; int main()
{
ll n;
cin >> n;
if(n == ){
cout << << endl;
return ;
}
cout << * pow_mod( , n - , MOD) % MOD << endl;
return ;
}

I. Max answer

题目链接:https://nanti.jisuanke.com/t/38228

题意:

给一个长为n(n <= 500000)的数组a, 对每个区间,求区间和乘区间最小值的最大值(−1e5 ≤ ai ​≤1e5).

分析:

这道题乍一看像是单调栈的模板题 , 但很可惜的是 ai 的取值可以为负数 , 所以对于以 ai 为最小值的区间 , 若 ai 为负数 , 要找到最小区间和 , 若为 ai 为正数 , 要找到最大区间和

对于正数ai,利用单调栈寻找以ai为最小值的区间,利用前缀和数组求区间和再*ai 即结果(ai 为正数 , ai为区间最小值)

先用单调栈求出以a[i]为最小值能够延伸的左端点L[i]和右端点R[i] , 然后对于每个正数,我们用该数乘以这个区间和。区间和用前缀和来求,对于每个数所能影响的最大区间我们已经求出来了。对于负数来说,我们需要求在它右区间的最小前缀和减去左区间的最大前缀和 , 因为只有它的区间和最小对应的这个区间的value值才最大,又由区间和=sum[j]-sum[i]可知,sum[j]最小,sum[i]最大时才能时这个区间和最小,所以问题的关键转化为寻找最小的sum[j]和最大的sum[i]

对于右区间的最小前缀和,以及左区间的最大前缀和我们用线段树来求

#include<bits/stdc++.h>
#define ios std::ios::sync_with_stdio(false) , std::cin.tie(0) , std::cout.tie(0)
#define sd(n) scanf("%d",&n)
#define sdd(n,m) scanf("%d%d",&n,&m)
#define sddd(n,m,k) scanf("%d%d%d",&n,&m,&k)
#define pd(n) printf("%d\n", (n))
#define pdd(n,m) printf("%d %d\n", n, m)
#define pld(n) printf("%lld\n", n)
#define pldd(n,m) printf("%lld %lld\n", n, m)
#define sld(n) scanf("%lld",&n)
#define sldd(n,m) scanf("%lld%lld",&n,&m)
#define slddd(n,m,k) scanf("%lld%lld%lld",&n,&m,&k)
#define sf(n) scanf("%lf",&n)
#define sff(n,m) scanf("%lf%lf",&n,&m)
#define sfff(n,m,k) scanf("%lf%lf%lf",&n,&m,&k)
#define rep(i,a,n) for (int i=a;i<=n;i++)
#define per(i,n,a) for (int i=n;i>=a;i--)
#define mm(a,n) memset(a, n, sizeof(a))
#define pb push_back
#define all(x) (x).begin(),(x).end()
#define fi first
#define se second
#define ll long long
#define numm ch - 48
#define MOD 1000000007
#define INF 0x3f3f3f3f
#define pi 3.14159265358979323
#define debug(x) cout << #x << ": " << x << endl
#define debug2(x, y) cout <<#x<<": "<<x<<" | "<<#y<<": "<<y<< endl;
#define debug3(x, y, z) cout <<#x<<": "<<x<<" | "<<#y<<": "<<y<<" | "<<#z<<": "<<z<<endl;
#define debug4(a, b, c, d) cout <<#a<<": "<<a<<" | "<<#b<<": "<<b<<" | "<<#c<<": "<<c<<" | "<<#d<<": "<<d<<endl;
using namespace std;
template<typename T>void read(T &res){bool flag=false;char ch;while(!isdigit(ch=getchar()))(ch=='-')&&(flag=true);
for(res=numm;isdigit(ch=getchar());res=(res<<)+(res<<)+numm);flag&&(res=-res);}
template<typename T>void Out(T x){if(x<)putchar('-'),x=-x;if(x>)Out(x/);putchar(x%+'');}
ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
ll lcm(ll a,ll b){return a*b/gcd(a,b);}
ll pow_mod(ll x,ll n,ll mod){ll res=;while(n){if(n&)res=res*x%mod;x=x*x%mod;n>>=;}return res;}
ll fact_pow(ll n,ll p){ll res=;while(n){n/=p;res+=n;}return res;} const int N = 5e5 + ;
ll sum[N],a[N];
ll maxn[N << ],minn[N << ];
void build(int l,int r,int root)
{
if(l==r)
{
maxn[root]=minn[root]=sum[l];
return ;
}
int mid=l+r>>;
build(l,mid,root<<);
build(mid+,r,root<<|);
maxn[root]=max(maxn[root<<],maxn[root<<|]);
minn[root]=min(minn[root<<],minn[root<<|]);
}
ll qmax(int l,int r,int root,int ql,int qr)
{
if(l>=ql&&r<=qr)
return maxn[root];
int mid=l+r>>;
ll ans=-INF;
if(mid>=ql)
ans=qmax(l,mid,root<<,ql,qr);
if(mid<qr)
ans=max(ans,qmax(mid+,r,root<<|,ql,qr));
return ans;
}
ll qmin(int l,int r,int root,int ql,int qr)
{
if(l>=ql&&r<=qr)
return minn[root];
int mid=l+r>>;
ll ans=INF;
if(mid>=ql)
ans=qmin(l,mid,root<<,ql,qr);
if(mid<qr)
ans=min(ans,qmin(mid+,r,root<<|,ql,qr));
return ans;
}
int LL[N],RR[N],st[N];
int main()
{
ios;
int n;
cin >> n;
rep(i , ,n)
cin >> a[i],sum[i] = sum[i-]+a[i];
build(,n,);
int top=;
rep(i , ,n)
{
while(top&&a[st[top]]>a[i])
RR[st[top--]]=i-;
st[++top]=i;
}
while(top)
RR[st[top--]]=n;
for(int i=n;i>=;i--)
{
while(top&&a[st[top]]>a[i])
LL[st[top--]]=i+;
st[++top]=i;
}
while(top)
LL[st[top--]]=;
ll ans = -INF;
rep(i , ,n)
{
if(a[i]>)
ans=max(ans,a[i]*(sum[RR[i]]-sum[LL[i]-]));
else
ans=max( ans,a[i]*( qmin(,n,,i,RR[i])-qmax(,n,,LL[i],i)) );
}
cout << ans << endl;
return ;
}

K. MORE XOR

题目链接:https://nanti.jisuanke.com/t/38230

题意:

分析:

对于 L - R 内的每一个数 ai 只有当 ai 出现次数为奇数时才会对结果做出贡献 , 所以我们可以先暴力打表找找规律

打表函数:

void f(int l,int r)
{
for(int i=l; i<=r; i++)
cnt[i]++;
}
void g(int l,int r)
{
for(int x=l; x<=r; x++)
for(int y=x; y<=r; y++)
f(x,y);
}
void w(int l,int r)
{
for(int x=l; x<=r; x++)
for(int y=x; y<=r; y++)
g(x,y);
}

打表

记录每个数字出现的次数,奇数次说明这个数存在于答案中,偶数次相当于对答案没有贡献。打表找规律发现跟4的倍数有关,所以我们预处理以4为分组的异或和,然后O(1)输出结果就可以了。

#include<bits/stdc++.h>
#define ios std::ios::sync_with_stdio(false) , std::cin.tie(0) , std::cout.tie(0)
#define sd(n) scanf("%d",&n)
#define sdd(n,m) scanf("%d%d",&n,&m)
#define sddd(n,m,k) scanf("%d%d%d",&n,&m,&k)
#define pd(n) printf("%d\n", (n))
#define pdd(n,m) printf("%d %d\n", n, m)
#define pld(n) printf("%lld\n", n)
#define pldd(n,m) printf("%lld %lld\n", n, m)
#define sld(n) scanf("%lld",&n)
#define sldd(n,m) scanf("%lld%lld",&n,&m)
#define slddd(n,m,k) scanf("%lld%lld%lld",&n,&m,&k)
#define sf(n) scanf("%lf",&n)
#define sff(n,m) scanf("%lf%lf",&n,&m)
#define sfff(n,m,k) scanf("%lf%lf%lf",&n,&m,&k)
#define rep(i,a,n) for (int i=a;i<=n;i++)
#define per(i,n,a) for (int i=n;i>=a;i--)
#define mm(a,n) memset(a, n, sizeof(a))
#define pb push_back
#define all(x) (x).begin(),(x).end()
#define fi first
#define se second
#define ll long long
#define numm ch - 48
#define MOD 1000000007
#define INF 0x3f3f3f3f
#define pi 3.14159265358979323
#define debug(x) cout << #x << ": " << x << endl
#define debug2(x, y) cout <<#x<<": "<<x<<" | "<<#y<<": "<<y<< endl;
#define debug3(x, y, z) cout <<#x<<": "<<x<<" | "<<#y<<": "<<y<<" | "<<#z<<": "<<z<<endl;
#define debug4(a, b, c, d) cout <<#a<<": "<<a<<" | "<<#b<<": "<<b<<" | "<<#c<<": "<<c<<" | "<<#d<<": "<<d<<endl;
using namespace std;
template<typename T>void read(T &res){bool flag=false;char ch;while(!isdigit(ch=getchar()))(ch=='-')&&(flag=true);
for(res=numm;isdigit(ch=getchar());res=(res<<)+(res<<)+numm);flag&&(res=-res);}
template<typename T>void Out(T x){if(x<)putchar('-'),x=-x;if(x>)Out(x/);putchar(x%+'');}
ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
ll lcm(ll a,ll b){return a*b/gcd(a,b);}
ll pow_mod(ll x,ll n,ll mod){ll res=;while(n){if(n&)res=res*x%mod;x=x*x%mod;n>>=;}return res;}
ll fact_pow(ll n,ll p){ll res=;while(n){n/=p;res+=n;}return res;} const int N = 1e5 + ; ll a[N] , sum[N];
int n , q;
int main()
{
int t;
sd(t);
while(t--)
{
cin >> n;
rep(i , ,n)
sld(a[i]);
sd(q);
rep(i , ,n)
{
if(i <= ) sum[i] = a[i];
else
sum[i] = sum[i - ] ^ a[i];
}
while(q--)
{
int l , r;
sdd(l , r);
int len = r - l + ;
ll ans ;
if(len % == )
ans = ; else if(len % == )
{
ans = sum[r];
if(l - > )
ans ^= sum[l - ];
} else if(len % == )
{
ans = sum[r] ^ sum[r - ];
if(l - > )
ans ^= sum[l - ];
if(l - > )
ans ^= sum[l - ];
} else if(len % == )
{
ans = sum[r - ];
if(l - > )
ans ^= sum[l - ];
}
pld(ans);
}
}
return ;
}

M. Subsequence

题目链接:https://nanti.jisuanke.com/t/38232

题意:

给你个母串S , 在给你 N 个字符串 T , 为 T 是否为 S 的子序列

分析:

这道题时间卡得有点过分 , 我用 string 读取字符串竟然分分钟 Tle 。。。

首先我们用 nex[ i ][ j ] 表示 S 串中 i 字符之后的离它最近的 j 字符的位置 , 从后往前预处理 S串中每一个字符 i 的下一位字符 j 的位置

然后输入 T 串判断 T 串当前字符 now1和 T 串下一个字符 T[i] 在主串中的位置是否会合法(即判断nex[now1][ T[i] - 'a'] 是否会小于 len(字符串下标从0开始) )

#include<bits/stdc++.h>
#define ios std::ios::sync_with_stdio(false) , std::cin.tie(0) , std::cout.tie(0)
#define sd(n) scanf("%d",&n)
#define sdd(n,m) scanf("%d%d",&n,&m)
#define sddd(n,m,k) scanf("%d%d%d",&n,&m,&k)
#define pd(n) printf("%d\n", (n))
#define pdd(n,m) printf("%d %d\n", n, m)
#define pld(n) printf("%lld\n", n)
#define pldd(n,m) printf("%lld %lld\n", n, m)
#define sld(n) scanf("%lld",&n)
#define sldd(n,m) scanf("%lld%lld",&n,&m)
#define slddd(n,m,k) scanf("%lld%lld%lld",&n,&m,&k)
#define sf(n) scanf("%lf",&n)
#define sff(n,m) scanf("%lf%lf",&n,&m)
#define sfff(n,m,k) scanf("%lf%lf%lf",&n,&m,&k)
#define rep(i,a,n) for (int i=a;i<=n;i++)
#define per(i,n,a) for (int i=n;i>=a;i--)
#define mm(a,n) memset(a, n, sizeof(a))
#define pb push_back
#define all(x) (x).begin(),(x).end()
#define fi first
#define se second
#define ll long long
#define numm ch - 48
#define INF 0x3f3f3f3f
#define pi 3.14159265358979323
#define debug(x) cout << #x << ": " << x << endl
#define debug2(x, y) cout <<#x<<": "<<x<<" | "<<#y<<": "<<y<< endl;
#define debug3(x, y, z) cout <<#x<<": "<<x<<" | "<<#y<<": "<<y<<" | "<<#z<<": "<<z<<endl;
#define debug4(a, b, c, d) cout <<#a<<": "<<a<<" | "<<#b<<": "<<b<<" | "<<#c<<": "<<c<<" | "<<#d<<": "<<d<<endl;
using namespace std;
template<typename T>void read(T &res)
{
bool flag=false;
char ch;
while(!isdigit(ch=getchar()))(ch=='-')&&(flag=true);
for(res=numm; isdigit(ch=getchar()); res=(res<<)+(res<<)+numm);
flag&&(res=-res);
}
template<typename T>void Out(T x)
{
if(x<)putchar('-'),x=-x;
if(x>)Out(x/);
putchar(x%+'');
}
ll gcd(ll a,ll b)
{
return b?gcd(b,a%b):a;
}
ll lcm(ll a,ll b)
{
return a*b/gcd(a,b);
}
ll pow_mod(ll x,ll n,ll mod)
{
ll res=;
while(n)
{
if(n&)res=res*x%mod;
x=x*x%mod;
n>>=;
}
return res;
}
ll fact_pow(ll n,ll p)
{
ll res=;
while(n)
{
n/=p;
res+=n;
}
return res;
}
const int N = 1e5 + ;
int nex[N][];
int now[N];
char s[N] , t[N];
void init(int &len)
{
len = strlen(s);
rep(i , , len - ) now[i] = len;
for(int i = len - ; i >= ; i --)
{
for(int j = ; j < ;j ++)
{
nex[i][j] = now[j];
}
now[s[i] - 'a'] = i;
}
}
int main()
{ scanf("%s" , s);
int len ;
init(len);
int n;
read(n);
while(n --)
{
scanf("%s" , t);
int len2 = strlen(t);
int flag = ;
int now1 = now[t[] - 'a'];
if(len < len2)
{
puts("NO");
continue;
}
if(now1 >= len)
{
puts("NO");
continue;
}
for(int i = ; i < len2 ; i++)
{
now1 = nex[now1][t[i] - 'a'];
if(now1 >= len){flag = ;break;}
}
if(flag) puts("NO");
else puts("YES");/**/
}
return ;
}

2019 The Preliminary Contest for ICPC China Nanchang National Invitational(A 、H 、I 、K 、M)的更多相关文章

  1. 2019The Preliminary Contest for ICPC China Nanchang National Invitational

    The Preliminary Contest for ICPC China Nanchang National Invitational 题目一览表 考察知识点 I. Max answer 单调栈+ ...

  2. 计蒜客 38229.Distance on the tree-1.树链剖分(边权)+可持久化线段树(区间小于等于k的数的个数)+离散化+离线处理 or 2.树上第k大(主席树)+二分+离散化+在线查询 (The Preliminary Contest for ICPC China Nanchang National Invitational 南昌邀请赛网络赛)

    Distance on the tree DSM(Data Structure Master) once learned about tree when he was preparing for NO ...

  3. The Preliminary Contest for ICPC China Nanchang National Invitational

    目录 Contest Info Solutions A. PERFECT NUMBER PROBLEM D. Match Stick Game G. tsy's number H. Coloring ...

  4. The Preliminary Contest for ICPC China Nanchang National Invitational I. Max answer (单调栈+线段树)

    题目链接:https://nanti.jisuanke.com/t/38228 题目大意:一个区间的值等于该区间的和乘以区间的最小值.给出一个含有n个数的序列(序列的值有正有负),找到该序列的区间最大 ...

  5. The Preliminary Contest for ICPC China Nanchang National Invitational and International Silk-Road Programming Contest

    打网络赛 比赛前的准备工作要做好 确保 c++/java/python的编译器能用 打好模板,放在桌面 A. PERFECT NUMBER PROBLEM #include <cstdio> ...

  6. The Preliminary Contest for ICPC China Nanchang National Invitational I题

    Alice has a magic array. She suggests that the value of a interval is equal to the sum of the values ...

  7. Max answer(The Preliminary Contest for ICPC China Nanchang National Invitational)

    Alice has a magic array. She suggests that the value of a interval is equal to the sum of the values ...

  8. The Preliminary Contest for ICPC China Nanchang National Invitational I.Max answer单调栈

    题面 题意:一个5e5的数组,定义一个区间的值为 这个区间的和*这个区间的最小值,注意数组值有负数有正数,求所有区间中最大的值 题解:如果全是正数,那就是原题 POJ2796 单调栈做一下就ok 我们 ...

  9. 计蒜客 38228. Max answer-线段树维护单调栈(The Preliminary Contest for ICPC China Nanchang National Invitational I. Max answer 南昌邀请赛网络赛) 2019ICPC南昌邀请赛网络赛

    Max answer Alice has a magic array. She suggests that the value of a interval is equal to the sum of ...

随机推荐

  1. python_day04

    今日内容: 一.爬虫三部曲: 1.发送请求 2.解析数据 3.保存数据 4.解析详情页,获取视频地址 mport requests import re #正则模块 import uuid #uuid. ...

  2. windows 10上源码编译dlib教程 | compile dlib on windows 10

    本文首发于个人博客https://kezunlin.me/post/654a6d04/,欢迎阅读! compile dlib on windows 10 Series Part 1: compile ...

  3. Discovery and auto register

    1.Discovery 2. auto register 2.1 agent 端配置 2.2 server 端配置

  4. Android中常见的设计模式

    前言: Android开发的设计模式,基本设计思想源于java的设计模式,java的设计模式有N多种,据不完全统计,迄今为止,网络出现最频繁的大概有23种.Java只是一门开发语言,学会并掌握这门语言 ...

  5. Spring中的事务回滚机制

    初学者笔记 问题:在Java项目汇中,添加@Transactional注解,报错之后,事务回滚未生效,数据仍插入数据库中.经查看报错位置位于新增成功之后.空指针异常. 一.特性 先了解一下@Trans ...

  6. vue JS实现监听浏览器返回按键事件

    // 这个是监听浏览器回退键的returnButton () { let vm = this; $(document).ready(function () { if (window.history & ...

  7. python数据分析三个重要方法之:numpy和pandas

    关于数据分析的组件之一:numpy ndarray的属性     4个必记参数:ndim:维度shape:形状(各维度的长度)size:总长度dtype:元素类型   一:np.array()产生n维 ...

  8. 科学使用Log4View2

    目录 目录 前言 科学使用 编辑和调试程序集 调试程序集 编辑程序集 结语 推荐文献 目录 NLog日志框架使用探究-1 NLog日志框架使用探究-2 科学使用Log4View2 前言 这个标题很低调 ...

  9. 浅析scrapy与scrapy-redis的区别

    首先,要了解两者的区别,就要清楚scrapy-redis是如何产生的,有需求才会有发展,社会在日新月异的飞速发展,大量相似网页框架的飞速产生,人们已经不满足于当前爬取网页的速度,因此有了分布式爬虫,让 ...

  10. 【RN - 基础】之Windows下搭建React Native开发环境

    前言 React Native由Facebook公司于2015年F8大会上开源,其主张“Learn once, write everywhere”.React Native的核心设计理念是:既拥有Na ...