codeforce303C-Minimum Modular-剪枝,暴力
题意:就是在一堆数字中,每一个数字对m取模不能等于这堆数字中的其他数字,同时给了K个机会可以删除一些数字。求最小的m;
思路:我一开始完全没思路,队长说的并查集什么的不会,于是就看了看别人的题解,看到可以用暴力剪枝的做法;
至于减枝的做法就是;
首先想到暴力,从小到大枚举m,然后判断n个数中对m取模同余个数有多少,如果超出k就枚举更大的m。然而这样的话,时间复杂度为O(n*1e6)。然后在网上找了博客看,但是有些地方当时自己感觉很不好理解的,这里做下自己的解释。1.首先这里用了一个剪枝,这个剪枝能节省大量时间。因为如果有k+1个数都是对m取模同余,那么只需删除k个数,就可以让剩下的数(只剩下一个数)不同余,那么从k+1个同余的数中取出2个数组成同余对的组合数就有C(2,k+1)种,即k*k+1/2种,那么如果对m取模同余的同余对的组合数大于k*k+1/2种,说明无法删除k个数使得剩下的数不同余。2.然后暴力判断此时满足1步骤的m作为模是否能满足同余的数小于k个。
#include <cstdio>
#include <iostream>
#include <cstring>
#include <string>
#include <algorithm> using namespace std; const int maxn = +; int a[maxn],n,k,re[maxn],h[maxn]; int main(){
scanf("%d%d",&n,&k);
int max = -;
memset(re,,sizeof(re));
memset(h,,sizeof(h));
for(int i=;i<=n;i++)
{
scanf("%d",&a[i]);
if(max < a[i])max = a[i];
}
for(int i=;i<=n;i++)
{
for(int j=;j<i;j++)
{
int tmp = a[i] - a[j]>?a[i]-a[j]:a[j]-a[i];
h[tmp]++;
}
} int res, flag =; for(int m=;m<=max+;m++)
{
int tk = k;
int sum = ;
flag = ;
for(int i=m;i<=1e6;i+=m)
{
sum+=h[i]; //剪枝操作
if(sum>k*(k+)/)break;
}
if(sum>k*(k+)/)continue;
res = m;
for(int i=; i<=n; i++)
{
if(!re[a[i]%res])re[a[i]%res]++;
else
{
tk--; //这里不能直接把k给减了
if(tk<){flag =;break;}
}
}
for(int i=;i<=n;i++)
{
re[a[i]%m]=; //注意每次都要清零,也可以用memset就是速度慢点
}
if(flag)break;
}
printf("%d\n",res);
}
codeforce303C-Minimum Modular-剪枝,暴力的更多相关文章
- codeforces 303C. Minimum Modular(数论+暴力+剪枝+贪心)
You have been given n distinct integers a1, a2, ..., an. You can remove at most k of them. Find the ...
- CF 303C——Minimum Modular——————【剪枝】
Minimum Modular time limit per test 2 seconds memory limit per test 256 megabytes input standard inp ...
- 51nod 1217 Minimum Modular(数论+暴力)
根据抽屉原理显然m>=(n-K) 于是在[n-K,max(a1..an)+1]的范围中枚举m 考虑K=0的做法... 如果a[i]≡a[j](mod m),则有m|(a[i]-a[j]),只要O ...
- hdu 4876(剪枝+暴力)
题意:给定n,k,l,接下来给出n个数,让你从n个数中选取k个数围成一圈,然后从这k个数中随意选出连续的m(m>=1&&m<=k)个数进行异或后得到[l,r]区间的所有值, ...
- 51nod 1217 Minimum Modular
N个不同的数a[1],a[2]...a[n],你可以从中去掉K个数,并且找到一个正整数M,使得剩下的N - K个数,Mod M的结果各不相同,求M的最小值. Input 第1行:2个数N, K,中间用 ...
- NOIP2018提高组金牌训练营——数论专题
地址 https://www.51nod.com/live/liveDescription.html#!liveId=23 1187 寻找分数 给出 a,b,c,d, 找一个分数p/q,使得a/b & ...
- Codeforces Round #183 (Div. 2)
A. Pythagorean Theorem II 暴力,\(O(n^2)\). B. Calendar 每个日期计算到0年1月1日的天数,相当于转化成前缀和形式. 闰年数计算\[\lfloor\fr ...
- NOIP2018 集训(三)
A题 Tree 问题描述 给定一颗 \(n\) 个点的树,树边带权,试求一个排列 \(P\) ,使下式的值最大 \[\sum_{i=1}^{n-1} maxflow(P_i, P_{i+1}) \] ...
- 19-11-10-Night
关于$Miemeng$,它死了. 大家有没有记得我在暑假里曾经写过一个著名模数? const int Mod=998224353; 现在有续集了(捂脸)(改不过题.jpg) const int Mod ...
随机推荐
- [转]jQuery不同版本区别
原文转载自csdn:http://blog.csdn.net/u010167032/article/details/23666145 了解不同版本之间的差异,与助于选择适合自己项目的版本. ⒈4重要新 ...
- 【iOS】Masonry 自动布局 MASViewConstraint.m:207 错误
问题详情: Assertion failure 报错原因: make.right.equalTo([_imageView superview]).right.with.offset(-); make. ...
- sentos中bonding(网卡绑定技术)1
一.GRUB添加kernel参数 1.# vim /etc/sysconfig/grubGRUB_CMDLINE_LINUX="...... net.ifnames=0" ...
- grep使用集合
一.grep使用 (一).选项 -a 不要忽略二进制数据. -A<显示列数> 除了显示符合范本样式的那一行之外,并显示该行之后的内容. -b 在显示符合范本样式的那一行之外,并显示该行之前 ...
- MariaDB 修改存储路径后启动失败问题解决
修改 MariaDB 路径到 home 路径下, 执行 systemctl start mariadb 启动MariaDB 时,报错提示: Job for mariadb.service failed ...
- MQ如何解决消息的顺序性
一.消息的顺序性 1.延迟队列:设置一个全局变量index,根据实际情况一次按照index++的逻辑一次给消息队列设置延迟时间段,可以是0.5s,甚至1s; 弊端:如果A,B,C..消息队列消费时间不 ...
- ABAP_增强点查找
*&---------------------------------------------------------------------* *& Report Z_FIND_EN ...
- (十七)c#Winform自定义控件-基类窗体
前提 入行已经7,8年了,一直想做一套漂亮点的自定义控件,于是就有了本系列文章. 开源地址:https://gitee.com/kwwwvagaa/net_winform_custom_control ...
- HBase的高可用(HA)
在公司写文档时候查到的一些资料,感觉对自己很有帮助,现在整理如下: 介绍 HBase是一个高可靠性.高性能.列存储.可伸缩.实时读写的分布式数据库系统,基于列的存储模式适合于存储非结构化数据. 适用场 ...
- 解决php - Laravel rules preg_match(): No ending delimiter '/' found 问题
### 说明解决php - Laravel preg_match(): No ending delimiter '/' found 一.遇到问题的原因本正常添加如下 public function r ...