[POJ2942]Knights of the Round Table(点双+二分图判定——染色法)
建补图,是两个不仇恨的骑士连边,如果有环,则可以凑成一桌和谐的打麻将
不能直接缩点,因为直接缩点求的是连通分量,点双缩点只是把环缩起来
普通缩点 点双缩点


由图可知,左图中的缩法不符题意,而右图两个缩完后的点都满足题意
然后题中说必须要奇数个骑士参加会议,即找奇圈(有奇数个点的圈)
问题就转化成缩点后判断一个点是否在奇圈里,这就用到了点双的性质
点双连通分量有两个性质:1.如果该分量里有一个奇圈,那么其他所有点也必然在某个奇圈中;2.含有一个奇圈的充要条件是该分量不是二分图。
所以我们只需要缩完点之后枚举V-DCC判断是不是二分图,不是二分图就是奇圈
那么判断二分图用染色法判断即可
注意一个骑士不可以参加会议
这句话是自言自语: Lockey注意要检查变量名是否写对了
二分图定义:
一个无向图,使得顶点集V可以分割为两个互不相交的子集A,B,使得所有边两端分别属于两个子集A,B。
度娘解释
#include<iostream>
#include<cstdio>
#include<vector>
#include<cstring>
using namespace std;
int n,m,a[][],dfn[],low[],st[],ins[],num,v[],cnt,sp[],ok[],flag[],root;
vector<int>son[],spn[];
void tarjan(int x,int pre){
dfn[x]=low[x]=++num;
if(x==root&&son[x].size()==) spn[++cnt].push_back(x);
st[++st[]]=x;
ins[x]=;
for(int i=;i<son[x].size();i++){
int y=son[x][i];
if(y==pre) continue;
if(!dfn[y]){
tarjan(y,x);
low[x]=min(low[x],low[y]);
if(low[y]>=dfn[x]){
cnt++;
int w;
do{
w=st[st[]--];
ins[w]=;
spn[cnt].push_back(w);
}while(w!=y);
spn[cnt].push_back(x);
}
}
else low[x]=min(low[x],dfn[y]);
}
}
int dfs(int x,int pre,int loc){//是二分图返回0,是奇圈返回1
v[x]=v[pre]^;
//cout<<x<<" "<<v[x]<<endl;
for(int i=;i<son[x].size();i++){
int y=son[x][i];
//cout<<y<<" "<<" "<<flag[y]<<" "<<v[y]<<endl;
if(!flag[y]||y==pre) continue;
if(v[y]==-){
if(dfs(y,x,loc)) return ;
}
else if(v[y]==v[x]) return ;
}
return ;
} int main(){
scanf("%d%d",&n,&m);
while(n!=||m!=){
int x,y;
for(int i=;i<=m;i++){
scanf("%d%d",&x,&y);
a[x][y]=a[y][x]=;
}
for(int i=;i<=n;i++){
for(int j=;j<=n;j++){
if(a[i][j]||i==j) continue;
son[i].push_back(j);
}
}
for(int i=;i<=n;i++){
if(!dfn[i]) root=i,tarjan(i,);
}
memset(v,-,sizeof(v));
v[]=;
//cout<<cnt<<endl;
for(int i=;i<=cnt;i++){
if(spn[i].size()==) continue;
for(int j=;j<spn[i].size();j++) flag[spn[i][j]]=;
if(dfs(spn[i][],,i))
for(int j=;j<spn[i].size();j++)
ok[spn[i][j]]=;
for(int j=;j<spn[i].size();j++) flag[spn[i][j]]=,v[spn[i][j]]=-;
}
int ans=;
for(int i=;i<=n;i++) ans+=ok[i];
printf("%d\n",n-ans);
for(int i=;i<=n;i++){
dfn[i]=low[i]=;
st[i]=;
ins[i]=;
ok[i]=;
sp[i]=;
son[i].clear();
spn[i].clear();
}
st[]=;
memset(v,-,sizeof(v));
memset(a,,sizeof(a));
num=cnt=;
scanf("%d%d",&n,&m);
} }
[POJ2942]Knights of the Round Table(点双+二分图判定——染色法)的更多相关文章
- poj2942 Knights of the Round Table[点双+二分图染色]
首先转化条件,把无仇恨的人连边,然后转化成了求有哪些点不在任何一个奇环中. 一个奇环肯定是一个点双,所以想到处理出所有点双,但是也可能有的点双是一个偶环,有的可能是偶环和奇环混杂,不好判. 考察奇环性 ...
- 【POJ 2942】Knights of the Round Table(双联通分量+染色判奇环)
[POJ 2942]Knights of the Round Table(双联通分量+染色判奇环) Time Limit: 7000MS Memory Limit: 65536K Total Su ...
- POJ2942 Knights of the Round Table[点双连通分量|二分图染色|补图]
Knights of the Round Table Time Limit: 7000MS Memory Limit: 65536K Total Submissions: 12439 Acce ...
- POJ2942 Knights of the Round Table 点双连通分量 二分图判定
题目大意 有N个骑士,给出某些骑士之间的仇恨关系,每次开会时会选一些骑士开,骑士们会围坐在一个圆桌旁.一次会议能够顺利举行,要满足两个条件:1.任意相互憎恨的两个骑士不能相邻.2.开会人数为大于2的奇 ...
- [POJ2942]:Knights of the Round Table(塔尖+二分图染色法)
题目传送门 题目描述 亚瑟王要在圆桌上召开骑士会议,为了不引发骑士之间的冲突,并且能够让会议的议题有令人满意的结果,每次开会前都必须对出席会议的骑士有如下要求: .相互憎恨的两个骑士不能坐在直接相邻的 ...
- POJ2942 Knights of the Round Table 点双连通分量,逆图,奇圈
题目链接: poj2942 题意: 有n个人,能够开多场圆桌会议 这n个人中,有m对人有仇视的关系,相互仇视的两人坐在相邻的位置 且每场圆桌会议的人数仅仅能为奇书 问有多少人不能參加 解题思路: 首先 ...
- 【POJ】2942 Knights of the Round Table(双连通分量)
http://poj.org/problem?id=2942 各种逗.... 翻译白书上有:看了白书和网上的标程,学习了..orz. 双连通分量就是先找出割点,然后用个栈在找出割点前维护子树,最后如果 ...
- 「题解」:[POJ2942]Knights of the Round Table
问题 E: Knights of the Round Table 时间限制: 1 Sec 内存限制: 256 MB 题面 题目描述 作为一名骑士是一个非常有吸引力的职业:寻找圣杯,拯救遇难的少女,与 ...
- Knights of the Round Table-POJ2942(双连通分量+交叉染色)
Knights of the Round Table Description Being a knight is a very attractive career: searching for the ...
随机推荐
- C#连接oracle 数据库查询时输入中文查询不出来,用plsql就可以
查询语句为:select * from Per where khmc like '%李%',其实是字符集的问题. 解决方案:在连接字符串加一个“Unicode=True;”
- Android零碎知识之Style and Theme
Android的styles资源文件中存在了我们在应用中定义的各种style,它们都是以style开始的元素,包含许多属性的集合.但我们一般般它们分为style和theme,那它们有什么区别呢? 一. ...
- MSYS2开发环境搭建(无幻的博客,编译OpenSSL,可使用pacman升级)
MSYS2开发环境搭建 软件安装 下载msys2-x86_64软件包,双击安装到某根目录下,比如D:\msys64. pacman是MSYS2自带的软件管理工具: 可通过修改msys64\etc\pa ...
- 简单封装 Delphi 的 DirectX类
var CreatorRenderer : TCreatorRenderer; Form1: TForm1; 窗体代码: {$R *.dfm} procedure TForm1.FormCreate ...
- Linux软件安装及基本概念
apt 基本用法 apt-get [options] install/remove/source 软件包1 [软件包2...] 注意:软件包不要带后缀.deb 常用命令及解释如下: apt下载软件是根 ...
- win7访问部分win2003速度慢
解决办法: 关闭TCPIP协议的自动优化调整功能,在win7上,以管理员身份运行cmd,输入 netsh interface tcp set global autotuninglevel=disabl ...
- Hystrix断路器配置属性解析
HystrixCommand 配置方式 我们的配置都是基于 HystrixCommand 的,我们通过在方法上添加 @HystrixCommand 注解并配置注解的参数来实现配置,但有的时候一个类里面 ...
- nginx搭建静态网站
Nginx (engine x) 是一个高性能的HTTP和反向代理web服务,常用于负载均衡构架,以提高网站的并发量,概念不过多介绍,更多细节请自行百度, 本文是纯操作案例,假设你已经知道什么是ngi ...
- Asp.Net Core 项目 EntityFramework Core 根据登录用户名过滤数据
1.创建ASP.NET Core Web Applicatoin (MVC)项目,并且使用 Individual User Account 2.创建数据筛选接口 Models->IDataFil ...
- 我所理解的Vue——学习心得体会1(Vue对象)
初学Vue,总结如下: 1.首先要区分html的dom和js的dom 2.html的dom是View的范畴,js的dom是Model的范畴. 3.vue这库就是创建了伟大的new Vue()对象,把h ...