Hadoop之WritableComprale 排序

Hadoop只对key进行排序

排序是 MapReduce 框架中最重要的操作之一。Map Task 和 Reduce Task 均会对数据(按照 key)进行排序。

该操作属于 Hadoop 的默认行为。任何应用程序中的数据均会被排序,而不管逻辑上是否需要。

默认排序是按照字典顺序排序,且实现该排序的方法是快速排序。对于 Map Task,它会将处理的结果暂时放到一个缓冲区

中,当缓冲区使用率达到一定阈值后,再对缓冲区中的数据进行一次排序,并将这些有序数据写到磁盘上,而当数据处理完毕

后,它会对磁盘上所有文件进行一次合并,以将这些文件合并成一个大的有序文件。对于 Reduce Task,它从每个 Map Task

上远程拷贝相应的数据文件,如果文件大小超过一定阈值,则放到磁盘上,否则放到内存中。如果磁盘上文件数目达到一定阈

值,则进行一次合并以生成一个更大文件;如果内存中文件大小或者数目超过一定阈值,则进行一次合并后将数据写到磁盘

上。当所有数据拷贝完毕后,Reduce Task 统一对内存和磁盘上的所有数据进行一次合并。

部分排序(区内排序)

MapReduce 根据输入记录的键对数据集排序。保证输出的每个文件内部排序。

//实现在每个分区文件内部进行有序输出
//排序的实体类需要实现WritableComparable 重写 compareTo方法
//让实体类作为key 即可

全排序

如何用 Hadoop 产生一个全局排序的文件?最简单的方法是使用一个分区。但该方法在

处理大型文件时效率极低,因为一台机器必须处理所有输出文件,从而完全丧失了

MapReduce 所提供的并行架构。

替代方案:首先创建一系列排好序的文件;其次,串联这些文件;最后,生成一个全局

排序的文件。主要思路是使用一个分区来描述输出的全局排序。例如:可以为上述文件创建

3 个分区,在第一分区中,记录的单词首字母 a-g,第二分区记录单词首字母 h-n, 第三分区

记录单词首字母 o-z。

//排序的实体类需要实现WritableComparable  重写 compareTo方法
public class PhoneDataSortBean implements WritableComparable<PhoneDataSortBean> { private long up;
private long down;
private long sum; @Override
public String toString() {
return up +
"\t" + down +
"\t" + sum;
} public PhoneDataSortBean(long up, long down) {
this.up = up;
this.down = down;
this.sum = up + down;
} public PhoneDataSortBean() {
} public long getUp() {
return up;
} public void setUp(long up) {
this.up = up;
} public long getDown() {
return down;
} public void setDown(long down) {
this.down = down;
} public long getSum() {
return sum;
} public void setSum(long sum) {
this.sum = sum;
} @Override
public int compareTo(PhoneDataSortBean o) {
//按照总流量排序
return (int) (o.sum - this.sum);
} @Override
public void write(DataOutput dataOutput) throws IOException {
dataOutput.writeLong(this.down);
dataOutput.writeLong(this.up);
dataOutput.writeLong(this.sum);
} @Override
public void readFields(DataInput dataInput) throws IOException {
this.down = dataInput.readLong();
this.up = dataInput.readLong();
this.sum = dataInput.readLong();
}
}

辅助排序:(GroupingComparator 分组)

Mapreduce 框架在记录到达 reducer 之前按键对记录排序,但键所对应的值并没有被排

序。甚至在不同的执行轮次中,这些值的排序也不固定,因为它们来自不同的 map 任务且

这些 map 任务在不同轮次中完成时间各不相同。一般来说,大多数 MapReduce 程序会避免

让 reduce 函数依赖于值的排序。但是,有时也需要通过特定的方法对键进行排序和分组等

以实现对值的排序。

二次排序

在自定义排序过程中,如果 compareTo 中的判断条件为两个即为二次排序。

本博客仅为博主学习总结,感谢各大网络平台的资料。蟹蟹!!

Hadoop之WritableComprale 排序的更多相关文章

  1. 2 weekend110的hadoop的自定义排序实现 + mr程序中自定义分组的实现

    我想得到按流量来排序,而且还是倒序,怎么达到实现呢? 达到下面这种效果, 默认是根据key来排, 我想根据value里的某个排, 解决思路:将value里的某个,放到key里去,然后来排 下面,开始w ...

  2. Hadoop日记Day18---MapReduce排序分组

    本节所用到的数据下载地址为:http://pan.baidu.com/s/1bnfELmZ MapReduce的排序分组任务与要求 我们知道排序分组是MapReduce中Mapper端的第四步,其中分 ...

  3. Hadoop shuffle与排序

    Mapreduce为了确保每个reducer的输入都按键排序.系统执行排序的过程-----将map的输出作为输入传给reducer 称为shuffle.学习shuffle是如何工作的有助于我们理解ma ...

  4. 三种方法实现Hadoop(MapReduce)全局排序(1)

    我们可能会有些需求要求MapReduce的输出全局有序,这里说的有序是指Key全局有序.但是我们知道,MapReduce默认只是保证同一个分区内的Key是有序的,但是不保证全局有序.基于此,本文提供三 ...

  5. hadoop streaming字段排序介绍

    我们在使用hadoop streaming的时候默认streaming的map和reduce的separator不指定的话,map和reduce会根据它们默认的分隔符来进行排序 map.reduce: ...

  6. 一起学Hadoop——二次排序算法的实现

    二次排序,从字面上可以理解为在对key排序的基础上对key所对应的值value排序,也叫辅助排序.一般情况下,MapReduce框架只对key排序,而不对key所对应的值排序,因此value的排序经常 ...

  7. Hadoop mapreduce自定义排序WritableComparable

    本文发表于本人博客. 今天继续写练习题,上次对分区稍微理解了一下,那根据那个步骤分区.排序.分组.规约来的话,今天应该是要写个排序有关的例子了,那好现在就开始! 说到排序我们可以查看下hadoop源码 ...

  8. hadoop MapReduce辅助排序解析

    1.数据样本,w1.csv到w5.csv,每个文件数据样本2000条,第一列是年份从1990到2000随机,第二列数据从1-100随机,本例辅助排序目标是找出每年最大值,实际上结果每年最大就是100, ...

  9. hadoop复合键排序使用方法

    在hadoop中处理复杂业务时,需要用到复合键,复合不同于单纯的继承Writable接口,而是继承了 WritableComparable<T>接口,而实际上,WritableCompar ...

随机推荐

  1. python中时间相关问题,仅作为笔记

    1.获取当前时间的两种方法: import datetime,timenow = time.strftime("%Y-%m-%d %H:%M:%S")print nownow = ...

  2. 用vs2010编译好的ICU库

    1.ICU库的官网网址为http://site.icu-project.org/ 2.ICU(International Components for Unicode)是一个国际化的字符编码和转化的库 ...

  3. WebBrowser执行脚本和调用外部方法

    控制WebBrowser实际上就是控制IE,最简单的方法就是执行javascript或vbscript,省去了接口的转换.如何执行脚本?以前我一直用mshtml中IHTMLWindow2接口的exec ...

  4. 推荐一些C#相关的网站、资源和书籍 (转载自http://blog.csdn.net/chinacsharper/article/details/17514923)

    一.网站 1.http://msdn.microsoft.com/zh-CN/ 微软的官方网站,C#程序员必去的地方.那里有API开发文档,还有各种代码.资源下载. 2.http://social.m ...

  5. poi 操作Excel 以及大数据量导出

    maven 依赖 (版本必须一致,否则使用SXSSFworkbook 时程序会报错) <dependency> <groupId>org.apache.poi</grou ...

  6. Dev C++ 工程没有调试信息 解决办法

    Dev C++ 工程没有调试信息 解决方法DevC++4.9.9.2中,按 F8 开始调试.提示信息为:工程没有调试信息,您想打开工程的调试选项并重新生成吗?选择是后,再按F8,仍旧是这个信息.什么原 ...

  7. hadoop之hive建表语句备份

    转自:https://blog.csdn.net/t___z/article/details/78492113 #!/bin/bash hive -e "use lbi;show table ...

  8. Laravel --- artisan创建表以及填充表数据流程总结

    1.创建建表文件 php artisan make:migration create_comments_table 打开database/migrations/xxx_create_comments_ ...

  9. C# Winfrom 简单的运用Timer控件

    注意,在使用DateAndTime时,需要添加引用 using Microsoft.VisualBasic;否则不可以计算时间之间的差值. using System; using System.Col ...

  10. 向Rocket.Chat推送消息

    Rocket.Chat推送消息 Rocket.Chat是一个开源实时通讯平台, 支持Windows, Mac OS, Linux. 支持聊天, 文件上传, 视频通话, 语音通话功能. 向Rocket. ...