P2458 [SDOI2006]保安站岗

没学树形DP的,看一下。

题目大意:一棵树有N个节点,现在需要将所有节点都看守住,如果我们选择了节点i,那么节点i本身,节点i的父亲和儿子都会被看守住

每个节点有一个选择代价,求完成任务所需要的最小的代价。

分析:根据每个节点其实有只有三个状态:

①被自己看守;②被儿子看守;③被父亲看守。

我们设这三种状态分别为F1,F2,F3。

当然最终作为答案的根节点没有父亲就没有F3。

接下来我们要考虑怎么转移。

首先看F1,我们规定F1[ i ]代表的是i节点被自己看守且以i为根的子树都已被看守的最小代价,也就是说一定会选择 i 节点自己,答案中必定会加入选择他自己的代价Wi。

因为这个点会被自己看管,所以只要考虑在其儿子的三个状态中选一个最小的,保证这个节点下面的子树都已被看守就行了。

所以F1[ i ] += min( F1[ Si ], F2[ Si ], F3[ Si ] ) + w[ i ],其中Si代表i节点的儿子。

接下来看F2,我们规定F2[ i ]代表i节点被儿子看守且以i为根的子树都已被看守的最小代价,也就是说一定不选i节点,但是至少要在i节点的儿子中选择一个而且最多也就选一个,因为代

价是正数,选一个就能把i看住,就不需要选择多余的点在增加代价了。

因为i节点不能被选,所以只能在其儿子的F1, F2状态中选择小的(F3[ Si ]代表选择i节点,而不能选i节点,所以不能用F3[ Si ]),来保证其子树都已被看守。

所以F2[ i ] += min{ F1[ Si ], F2[ Si ] } + t。t代表选择一个儿子的最小代价:t = F1[ Si ] - min{ F1[ Si ], F2[ Si ] }

顺便解释一下t的转移:t是Si被看管的代价中选一个最小的,如果是F1,那么说明Si已经被选,就不用再加W[ Si ]了,如果是F2,那么F1 - F2 = W[ i ]。(注意F1和F2代表的意义)

最后看F3,我们规定F3[ i ]代表i节点被父亲看守且以i为根的子树都已经被看守的最小代价,也就是说一定不选i节点和其儿子节点,必须选择他的父亲。因为必须选择父亲,那么i一定会被父亲看守,那么我们只要保证其下面的子树都已被看守,就是在儿子的F1, F2中选一个小的,因为还是不能选i,所以其儿子的F3状态仍然不用考虑,同F2

所以F3[ i ] += min{ F1[ Si ], F2[ Si ]}

看代码吧……………*&%^qaq^%&*

#include<cstdio>
#include<iostream>
#include<cstring>
using namespace std;
const int maxn=;
const int inf=0x3f3f3f3f;
int n;
struct edge{
int num,k,m;
}e[maxn];
int s[maxn][maxn],fa[maxn],f1[maxn],f2[maxn],f3[maxn];
int ans;
void tree_dp(int i)
{
f1[i]=e[i].k;
f2[i]=f3[i]=;
int minn=inf;
for (int j=;j<=e[i].m;j++)
{
tree_dp(s[i][j]);
f1[i]+=min(f1[s[i][j]],min(f2[s[i][j]],f3[s[i][j]]));
f2[i]+=min(f1[s[i][j]],f2[s[i][j]]);
int t=f1[s[i][j]]-min(f1[s[i][j]],f2[s[i][j]]);
minn=min(minn,t);
f3[i]+=min(f1[s[i][j]],f2[s[i][j]]);
}
f2[i]+=minn;
}
void work()
{
scanf("%d",&n);
for(int i=;i<=n;i++)
{
scanf("%d",&e[i].num); //注意读入
scanf("%d%d",&e[e[i].num].k,&e[e[i].num].m);
for (int j=;j<=e[e[i].num].m;j++)
{
scanf("%d",&s[e[i].num][j]); //儿子节点数
fa[s[e[i].num][j]]=e[i].num;
}
}
memset(f1,inf,sizeof(f1));
memset(f2,inf,sizeof(f2));
memset(f3,inf,sizeof(f3));
for (int i=;i<=n;i++)
{
if(!fa[i]) //没有父亲,就是根节点
{
tree_dp(i);
ans=min(f1[i],f2[i]); //根节点只有2种情况
break;
}
}
printf("%d",ans);
}
int main()
{
work();
return ;
}

C++ 洛谷 P2458 [SDOI2006]保安站岗 from_树形DP的更多相关文章

  1. 洛谷 P2458 [SDOI2006]保安站岗

    题目传送门 解题思路: 树形DP 可知一个点被控制有且仅有一下三种情况: 1.被父亲节点上的保安控制 2.被儿子节点上的保安控制 3.被当前节点上的保安控制 我们设dp[0/1/2][u]表示u节点所 ...

  2. Luogu P2458 [SDOI2006]保安站岗【树形Dp】

    题目描述 五一来临,某地下超市为了便于疏通和指挥密集的人员和车辆,以免造成超市内的混乱和拥挤,准备临时从外单位调用部分保安来维持交通秩序. 已知整个地下超市的所有通道呈一棵树的形状:某些通道之间可以互 ...

  3. Luogu P2458 [SDOI2006]保安站岗(树形dp)

    P2458 [SDOI2006]保安站岗 题意 题目描述 五一来临,某地下超市为了便于疏通和指挥密集的人员和车辆,以免造成超市内的混乱和拥挤,准备临时从外单位调用部分保安来维持交通秩序. 已知整个地下 ...

  4. 洛谷 P2015 二叉苹果树(codevs5565) 树形dp入门

    dp这一方面的题我都不是很会,所以来练(xue)习(xi),大概把这题弄懂了. 树形dp就是在原本线性上dp改成了在 '树' 这个数据结构上dp. 一般来说,树形dp利用dfs在回溯时进行更新,使用儿 ...

  5. 洛谷 P3267 - [JLOI2016/SHOI2016]侦察守卫(树形 dp)

    洛谷题面传送门 经典题一道,下次就称这种"覆盖距离不超过 xxx 的树形 dp"为<侦察守卫模型> 我们考虑树形 \(dp\),设 \(f_{x,j}\) 表示钦定了 ...

  6. 洛谷 P7163 - [COCI2020-2021#2] Svjetlo(树形 dp)

    洛谷题面传送门 神仙级别的树形 dp. u1s1 这种代码很短但巨难理解的题简直是我的梦魇 首先这种题目一看就非常可以 DP 的样子,但直接一维状态的 DP 显然无法表示所有情况.注意到对于这类统计一 ...

  7. 洛谷【P2458】[SDOI2006]保安站岗 题解 树上DP

    题目描述 五一来临,某地下超市为了便于疏通和指挥密集的人员和车辆,以免造成超市内的混乱和拥挤,准备临时从外单位调用部分保安来维持交通秩序. 已知整个地下超市的所有通道呈一棵树的形状:某些通道之间可以互 ...

  8. P2458 [SDOI2006]保安站岗[树形dp]

    题目描述 五一来临,某地下超市为了便于疏通和指挥密集的人员和车辆,以免造成超市内的混乱和拥挤,准备临时从外单位调用部分保安来维持交通秩序. 已知整个地下超市的所有通道呈一棵树的形状:某些通道之间可以互 ...

  9. [Luogu][P2458] [SDOI2006]保安站岗

    题目链接 看起来似乎跟最小点覆盖有点像.但区别在于: 最小点覆盖要求所有边在其中,而本题要求所有点在其中. 即:一个点不选时,它的儿子不一定需要全选. 画图理解: 对于这样一幅图,本题中可以这样选择: ...

随机推荐

  1. React学习(3)——ref,key,PureComponent,bindActionCreator

    ref 如果在html里设置ref那么它就指向这个真实的DOM节点. 如果在组件里设置ref,那么它就指向这个组件实例的引用,和组件里面的this互等. 我们经常在表单input,select里使用, ...

  2. jquery子元素过滤器

    <!DOCTYPE html><html><head><meta http-equiv="Content-Type" content=&q ...

  3. js动态创建表格

    <!DOCTYPE html><html><head><meta http-equiv="Content-Type" content=&q ...

  4. [Windows][VC]开机自动启动程序的几种方法

    原文:[Windows][VC]开机自动启动程序的几种方法 很多监控软件要求软件能够在系统重新启动后不用用户去点击图标启动项目,而是直接能够启动运行,方法是写注册表Software\\Microsof ...

  5. HTTP、FTP状态码 汇总

    原文:HTTP.FTP状态码 汇总 HTTP1xx - 信息提示(这些状态代码表示临时的响应.客户端在收到常规响应之前,应准备接收一个或多个 1xx 响应. ) • 100 - 继续.• 101 - ...

  6. ajax 异步长连接遭遇堵塞,“排序执行请求”的问题解决

    今天开发一个网页聊天程序,利用AJAX保持着一个长连接监听新的聊天信息,之后又调用了另外一个AJAX来发言,于是就发生了一个AJAX线程被阻塞的问题. 在未监听到新的聊天信息的之前,发言用的AJAX就 ...

  7. Cordova 教程地址

    原文:Cordova 教程地址 1.Cordova 官网 http://cordova.apache.org/ 2.Cordova插件库 for android http://cordova.apac ...

  8. 简单易用的MongoDB

    从我第一次听到Nosql这个概念到如今已经走过4个年头了,但仍然没有具体的去做过相应的实践.最近获得一段学习休息时间,购买了Nosql技术实践一书,正在慢慢的学习.在主流观点中,Nosql大体分为4类 ...

  9. Interactive Data Display如何显示菜单?

    貌似直接跟其它控件一样添加菜单就行了. 不过这个版本已经取消了默认菜单,所有的菜单功能都得自己去实现.

  10. myCloudData SDK

    http://www.tmssoftware.com/site/myclouddata.asp http://www.tmssoftware.com/site/myclouddatasdk.asp