BZOJ2226:[SPOJ5971]LCMSum
Description
Input
Output
Sample Input
1
2
5
Sample Output
4
55
HINT
1 <= T <= 300000
1 <= n <= 1000000
题解:
题意即求∑LCM(i,n)(1<=i<=n)。
枚举gcd,统计对答案的贡献。
原本我采用的方法是容斥,求出n的因数表后,由大到小枚举gcd[i],并把更小的gcd[j]的贡献减去相应的值。
复杂度还可以,但是常数非常大,在BZ上过不了。
有一个常数更小的方法:枚举gcd后,我们需要知道1~n div gcd-1中所有与n div gcd互质的数的和。
设m=n div gcd。若x与m互质,则m-x与m互质,即与m互质的数成对出现,所以与m互质的数的和为m*φ(m)div 2。(m<=2时依旧成立)
线性筛预处理出欧拉函数,就可以快速求值了。
代码:
TLE的容斥(P++注意):
#include <bits/stdc++.h>
using namespace std;
#define begin {
#define end }
#define while while(
#define if if(
#define do )
#define then )
#define for for(
#define fillchar(a,b,c) memset(a,c,b)
#define writeln printf("\n")
#define write printf
#define readln readl()
#define inc(a) a++
#define dec(a) a--
#define exit(a) return a
#define mod %
#define div /
#define shl <<
#define shr >>
#define extended long double
#define longint int
#define integer short
#define int64 long long
template<typename T> inline void read(T& a)
begin
T x=,f=; char ch=getchar();
while(ch<'')or(ch>'')do
begin
if ch=='-' then f=-; ch=getchar();
end
while(ch>='')and(ch<='')do
begin
x=x*+ch-''; ch=getchar();
end
a=x*f;
end
inline void readl()
begin
char ch; ch=getchar();
while ch!='\n' do ch=getchar();
end
int64 i,t,ii,j,n,m,x,a[],b[],ans;
int main()
begin
read(t);
for ii=;ii<=t;ii++ do
begin
read(x); j=sqrt(x); n=; m=; ans=;
for i=;i<=j;i++ do
begin
if x mod i== then
begin
inc(n); a[n]=i;
if x div i>i then begin inc(m); a[-m]=x div i; end;
end
end
for i=n+;i<=n+m;i++ do a[i]=a[-(m-(i-n)+)];
n=n+m;
for i=;i<=n;i++ do b[a[i]]=;
for i=n;i>=;i-- do
begin
b[a[i]]=b[a[i]]+(+x div a[i])*(x div a[i])div ;
ans=ans+b[a[i]]*x;
j=;
while a[j]*a[j]<=a[i] do
begin
if j>n then break;
if a[i] mod a[j]== then
begin
b[a[j]]=b[a[j]]-(a[i] div a[j])*b[a[i]];
if(a[j]*a[j]<a[i])and(a[j]>)then
b[a[i] div a[j]]=b[a[i] div a[j]]-a[j]*b[a[i]];
end
inc(j);
end
end
write("%lld",ans); writeln;
end
end
标程(P++注意):
#include <bits/stdc++.h>
using namespace std;
#define begin {
#define end }
#define while while(
#define if if(
#define do )
#define then )
#define for for(
#define fillchar(a,b,c) memset(a,c,b)
#define writeln printf("\n")
#define write printf
#define readln readl()
#define inc(a) a++
#define dec(a) a--
#define exit(a) return a
#define mod %
#define div /
#define shl <<
#define shr >>
#define extended long double
#define longint int
#define integer short
#define int64 long long
template<typename T> inline void read(T& a)
begin
T x=,f=; char ch=getchar();
while(ch<'')or(ch>'')do
begin
if ch=='-' then f=-; ch=getchar();
end
while(ch>='')and(ch<='')do
begin
x=x*+ch-''; ch=getchar();
end
a=x*f;
end
inline void readl()
begin
char ch; ch=getchar();
while ch!='\n' do ch=getchar();
end
longint p[],vis[],ph[],pcnt=,T,n;
void init_p()
begin
ph[]=; ph[]=;
int64 temp;
for int i=;i<;i++ do
begin
if not vis[i] then
begin
p[pcnt]=i; ph[i]=i-; inc(pcnt);
end
for int j=;j<pcnt&&(temp=(int64)p[j]*i)<;j++ do
begin
vis[temp]=;
if i mod p[j]== then begin ph[temp]=ph[i]*p[j]; break; end
else ph[temp]=ph[i]*(p[j]-);
end
end
end
int64 solve(int n)
begin
int64 ans=0ll;
longint half=(int)(sqrt(n)+0.01);
if half*half==n then begin ans+=1ll*ph[half]*half/; dec(half); end
inc(ans); ans+=1ll*ph[n]*n/;
for int i=;i<=half;i++ do
if n mod i== then
begin
ans+=1ll*ph[i]*i/;
ans+=1ll*ph[n/i]*n/i/;
end
exit(ans*n);
}
int main()
begin
read(T); init_p();
for int i=;i<=T;i++ do
begin read(n); write("%lld",solve(n)); writeln; end
return ;
end
BZOJ2226:[SPOJ5971]LCMSum的更多相关文章
- [BZOJ2226][SPOJ5971]LCMSum(莫比乌斯反演)
2226: [Spoj 5971] LCMSum Time Limit: 20 Sec Memory Limit: 259 MBSubmit: 1949 Solved: 852[Submit][S ...
- [bzoj2226][Spoj5971]LCMSum_欧拉函数_线性筛
LCMSum bzoj-2226 Spoj-5971 题目大意:求$\sum\limits_{i=1}^nlcm(i,n)$ 注释:$1\le n\le 10^6$,$1\le cases \le 3 ...
- BZOJ2226 & SPOJ5971:LCMSum——题解
http://www.lydsy.com/JudgeOnline/problem.php?id=2226 题目大意:给定一个n,求lcm(1,n)+lcm(2,n)+……+lcm(n,n). ———— ...
- AHOI2018训练日程(3.10~4.12)
(总计:共90题) 3.10~3.16:17题 3.17~3.23:6题 3.24~3.30:17题 3.31~4.6:21题 4.7~4.12:29题 ZJOI&&FJOI(6题) ...
- 【BZOJ2226】[Spoj 5971] LCMSum 莫比乌斯反演(欧拉函数?)
[BZOJ2226][Spoj 5971] LCMSum Description Given n, calculate the sum LCM(1,n) + LCM(2,n) + .. + LCM(n ...
- BZOJ2226: [Spoj 5971] LCMSum
题解: 考虑枚举gcd,然后问题转化为求<=n且与n互质的数的和. 这是有公式的f[i]=phi[i]*i/2 然后卡一卡时就可以过了. 代码: #include<cstdio> # ...
- BZOJ2226:LCMSum(欧拉函数)
Description Given n, calculate the sum LCM(1,n) + LCM(2,n) + .. + LCM(n,n), where LCM(i,n) denotes t ...
- [BZOJ2226]LCMSum
转化一下,$\sum\limits_{i=1}^n[i,n]=n\sum\limits_{i=1}^n\dfrac i{(i,n)}$ 枚举$d=(i,n)$,上式变为$n\sum\limits_{d ...
- 【bzoj2226】[Spoj 5971] LCMSum 欧拉函数
题目描述 Given n, calculate the sum LCM(1,n) + LCM(2,n) + .. + LCM(n,n), where LCM(i,n) denotes the Leas ...
随机推荐
- jQuery 基本选择器
1 基本选择器 $(‘#id属性值’) ----------->document.getElementById() $(‘tag标签名称’)----------->document.ge ...
- LightOJ-1282-Leading and Trailing-快速幂+数学
You are given two integers: n and k, your task is to find the most significant three digits, and lea ...
- docker 使用网络以及容器互联
[root@docker01 /]# docker run -d -p : --name web training/webapp ####小p ,容器的5000端口随机映射到宿主机的9999端口 se ...
- RoHS
RoHS是<电气.电子设备中限制使用某些有害物质指令>(the Restriction of the use of certain hazardous substances in elec ...
- Quartz2作业监听
在本教程中,我们将展示/介绍如何创建一个JobListener,跟踪运行工作状态在作业完成等. P.S 这个例子是Quartz 2.1.5 1. Quartz 作业 作业 - 用于打印一个简单的信息, ...
- D3.js的基础部分之数组的处理 集合(Set)(v3版本)
数组的处理 之 集合(set) 集合(Set)是数学中常用的概念,表示具有某种特定性质的事物的总体.集合里的项叫做元素.集合的相关方法有: d3.set([array]) //使用数组来构建集合, ...
- 靠谱助手 BlueStacks
靠谱助手 BlueStacks 安卓虚拟机
- 通讯录查询(Profile Lookup)——freeCodeCamp
- jpa 踩坑 SQLGrammarException
SQLGrammarException could not execute query cause by not found column id ,, id指的是,返回的结果没有Id 封装结果集出错 ...
- adb命令 查看运行APP当前页面的Activity名称
命令 adb shell "dumpsys window | grep mCurrentFocus" 结果