题面

题目分析

\[\begin{split}
\sum\limits_{i=1}^n\sum\limits_{j=1}^mgcd(i,j)^k&=\sum\limits_{d=1}^nd^k\sum\limits_{i=1}^n\sum\limits_{j=1}^m[gcd(i,j)==d]\\
\end{split}
\]

设\(f(x)\)表示\(gcd(i,j)=x\),\(g(x)\)表示\(gcd(i,j)==kx,k\in Z\)。

\[\begin{split}
g(x)&=\sum\limits_{x|d}^nf(d)\\
&=\sum\limits_{i=1}^n\sum\limits_{j=1}^m[x|gcd(i,j)]\\
&=\sum\limits_{i=1}^{\lfloor\frac n x\rfloor}\sum\limits_{j=1}^{\lfloor\frac m x\rfloor}\lfloor\frac n x\rfloor\lfloor\frac m x\rfloor\\
f(x)&=\sum\limits_{x|d}^n\mu(\frac dx)g(d)=\sum\limits_{x|d}^n\mu(\frac dx)\lfloor\frac n d\rfloor\lfloor\frac m d\rfloor
\end{split}
\]

\[\begin{split}
ans&=\sum\limits_{d=1}^nd^k\cdot f(d)\\
&=\sum\limits_{d=1}^nd^k\sum\limits_{d|T}^n\mu(\frac Td)\lfloor\frac n T\rfloor\lfloor\frac m T\rfloor\\
&=\sum\limits_{T=1}^n\lfloor\frac n T\rfloor\lfloor\frac m T\rfloor\sum\limits_{d|T}\mu(\frac Td)d^k
\end{split}
\]

由于\(\mu\)和\(d^k\)均为积性函数,所以\(\sum\limits_{d|T}\mu(\frac Td)d^k\)也为积性函数,可以在线性筛中\(O(n\log n)\)预处理。

前面部分用整除分块加速。

代码实现

#include<iostream>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<cstdio>
#include<iomanip>
#include<cstdlib>
#define MAXN 0x7fffffff
typedef long long LL;
const int N=5000005,mod=1e9+7;
using namespace std;
inline int Getint(){register int x=0,f=1;register char ch=getchar();while(!isdigit(ch)){if(ch=='-')f=-1;ch=getchar();}while(isdigit(ch)){x=x*10+ch-'0';ch=getchar();}return x*f;}
int g[N],mu[N],prime[N];
bool vis[N];
LL ksm(LL x,LL k){
LL ret=1;
while(k){
if(k&1)ret=ret*x%mod;
x=x*x%mod;
k>>=1;
}
return ret;
}
int low[N];
int main(){
int T=Getint(),K=Getint(); mu[1]=g[1]=1;
for(int i=2;i<=5e6;i++){
if(!vis[i]){
prime[++prime[0]]=i,mu[i]=-1;
low[i]=i,g[i]=ksm(i,K)-1;
}
for(int j=1;j<=prime[0]&&1ll*prime[j]*i<=5e6;j++){
vis[i*prime[j]]=1;
if(i%prime[j]==0){
low[i*prime[j]]=low[i]*prime[j];
if(low[i*prime[j]]==i*prime[j])
g[i*prime[j]]=g[i]*ksm(prime[j],K)%mod;
else
g[i*prime[j]]=(1ll*g[low[i*prime[j]]]*g[i*prime[j]/low[i*prime[j]]])%mod;
break;
}
low[i*prime[j]]=prime[j];
g[i*prime[j]]=(1ll*g[i]*g[prime[j]])%mod;
mu[i*prime[j]]=-mu[i];
}
}
for(int i=1;i<=5e6;i++)g[i]=(g[i]+g[i-1])%mod; while(T--){
int n=Getint(),m=Getint();
if(n>m)swap(n,m);
int ans=0;
for(int l=1,r;l<=n;l=r+1){
r=min(n/(n/l),m/(m/l));
ans=(ans+1ll*(n/l)*(m/l)%mod*(g[r]-g[l-1])%mod+mod)%mod;
}
cout<<ans<<'\n';
}
return 0;
}

【BZOJ4407】于神之怒加强版的更多相关文章

  1. [BZOJ4407]于神之怒加强版

    BZOJ挂了... 先把程序放上来,如果A了在写题解吧. #include<cstdio> #include<algorithm> #define N 5000010 #def ...

  2. BZOJ4407: 于神之怒加强版(莫比乌斯反演 线性筛)

    Description 给下N,M,K.求 感觉好迷茫啊,很多变换看的一脸懵逼却又不知道去哪里学.一道题做一上午也是没谁了,, 首先按照套路反演化到最后应该是这个式子 $$ans = \sum_{d ...

  3. BZOJ4407 于神之怒加强版 - 莫比乌斯反演

    题解 非常裸的莫比乌斯反演. 但是反演完还需要快速计算一个积性函数(我直接用$nlogn$卷积被TLE了 推荐一个博客 我也不想再写一遍了 代码 #include<cstring> #in ...

  4. 【BZOJ4407】于神之怒加强版(莫比乌斯反演)

    [BZOJ4407]于神之怒加强版(莫比乌斯反演) 题面 BZOJ 求: \[\sum_{i=1}^n\sum_{j=1}^mgcd(i,j)^k\] 题解 根据惯用套路 把公约数提出来 \[\sum ...

  5. 【BZOJ4407】于神之怒加强版 莫比乌斯反演

    [BZOJ4407]于神之怒加强版 Description 给下N,M,K.求 Input 输入有多组数据,输入数据的第一行两个正整数T,K,代表有T组数据,K的意义如上所示,下面第二行到第T+1行, ...

  6. 【BZOJ-4407】于神之怒加强版 莫比乌斯反演 + 线性筛

    4407: 于神之怒加强版 Time Limit: 80 Sec  Memory Limit: 512 MBSubmit: 241  Solved: 119[Submit][Status][Discu ...

  7. BZOJ 4407 于神之怒加强版 (莫比乌斯反演 + 分块)

    4407: 于神之怒加强版 Time Limit: 80 Sec  Memory Limit: 512 MBSubmit: 1067  Solved: 494[Submit][Status][Disc ...

  8. bzoj 4407 于神之怒加强版 (反演+线性筛)

    于神之怒加强版 Time Limit: 80 Sec  Memory Limit: 512 MBSubmit: 1184  Solved: 535[Submit][Status][Discuss] D ...

  9. 【反演复习计划】【bzoj4407】于神之怒加强版

    #include<bits/stdc++.h> #define N 5000010 #define yql 1000000007 using namespace std; typedef ...

  10. 【bzoj4407】于神之怒加强版 莫比乌斯反演+线性筛

    题目描述 给下N,M,K.求 输入 输入有多组数据,输入数据的第一行两个正整数T,K,代表有T组数据,K的意义如上所示,下面第二行到第T+1行,每行为两个正整数N,M,其意义如上式所示. 输出 如题 ...

随机推荐

  1. idea使用问题

    1. 问题: 突发断电导致idea的play项目错误,无法识别build.sbt,build.sbt文件报错,Cannot resolve symbol 解决方案: For anyone having ...

  2. 如何将Canvas中内容保存为图片

    Bitmap bm = Bitmap.createBitmap(320, 480, Config.ARGB_8888); Canvas canvas = new Canvas(bm); Paint p ...

  3. LeetCode 1041. Robot Bounded In Circle (困于环中的机器人)

    题目标签:Math 题目让我们判断机器人是否是一直在走一个圈. 当我们把 instructions 走完一遍时候: 1. 如果机器人回到了原点,那么它是在走一个圈. 2. 如果机器人的方向没有改变,那 ...

  4. Android读取logcat信息

    测试的时候,经常遇到开发需要logcat分析定位bug,今天简单记录一下获取logcat的方法 前提条件:电脑中要安装好Android SDK 1.cmd 进入到这个界面 2.电脑连上手机,手机记得打 ...

  5. Opencv稍微高级点的鼠标事件-OpenCV步步精深

    今天我们要来点稍微高级的东西.在我们按下鼠标时可以画矩形,而我们按下键盘m键时,切换到画圆的模式,再按下m键,回到画矩形模式. 一起来写下代码,首先当然还是调用库 import cv2 import ...

  6. elasticsearch实现读写分离

    简介 今天我们不讲三国,我们讲一讲elasticsearch(以下简称ES)读写分离,这是个好东西,全文索引的时候使用它贼得劲,对elasticsearch索引原理不太清楚的,请自行查找相关的文章 这 ...

  7. shell 命令 进程相关

     1. 进程标识号PID 唯一性 pid 为0    内核进程,linux内核创建 pid 为1    init进程,系统最早创建的进程,init是所有用户进程的祖先 2. 查看系统进程信息 (1)[ ...

  8. 2000w数据,redis中只存20w的数据,如何保证redis中的数据都是热点数据

    redis 内存数据集大小上升到一定大小的时候,就会施行数据淘汰策略.redis 提供 6种数据淘汰策略: voltile-lru:从已设置过期时间的数据集(server.db[i].expires) ...

  9. sql(10) sum

    SUM() 函数SUM 函数返回数值列的总数(总额).SQL SUM() 语法SELECT SUM(column_name) FROM table_name新建表 StudentSS_id Grade ...

  10. Educational Codeforces Round 27 D. Driving Test

    单调栈 题意看了半天... #include <cstdio> #include <cstdlib> #include <cmath> #include <c ...