233 Matrix

有一\(n\times m\)的矩阵\(\{a\}\),定义\(a[0][0]=0,a[0][1]=233,a[0][2]=2333,a[0][3]=23333...\),然后给出\(a[1][0],a[2][0],...,a[n][0]\),未给出或定义的位置满足\(a[i][j]=a[i-1][j]+a[i][j-1]\),询问\(a[n][m]\)的值\(mod\ 10000007\),\(n ≤ 10,m ≤ 10^9\)。

显然对于第0行,我们有转移方程\(a[0][i]=a[0][i-1]\times 10+3\),这个是可以转移的,显然需要增添辅助1,注意到n很小,故考虑整个压维,故设状态矩阵(以n=2为例)

\[\begin{bmatrix}1&a[0][i]&a[1][i-1]&a[2][i-1]\end{bmatrix}
\]

不难得知转移方程

\[\begin{bmatrix}1&3&0&0\\0&10&1&1\\0&0&1&1\\0&0&0&1\end{bmatrix}
\]

于是根据规律,填写转移矩阵和状态矩阵即可。

参考代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#define il inline
#define ri register
#define ll long long
#define yyb 10000007
using namespace std;
struct matrix{
ll jz[12][12];
il void clear(){
memset(jz,0,sizeof(jz));
}
il void unit(){
clear();ri int i;
for(i=0;i<12;++i)jz[i][i]=1;
}
il void print(){
ri int i,j;
for(i=0;i<12;++i,putchar('\n'))
for(j=0;j<12;++j)
printf("%lld ",jz[i][j]);
putchar('\n');
}
il matrix operator*(matrix x){
matrix y;y.clear();
ri int i,j,k;
for(i=0;i<12;++i)
for(j=0;j<12;y.jz[i][j]%=yyb,++j)
for(k=0;k<12;++k)
y.jz[i][j]+=jz[i][k]*x.jz[k][j]%yyb;
return y;
}template<class free>
il matrix operator^(free y){
matrix ans,x(*this);ans.unit();
while(y){
if(y&1)ans=ans*x;
x=x*x,y>>=1;
}return ans;
}
}tran,state;
int main(){
ll n,m;int i,j;
while(scanf("%lld%lld",&n,&m)!=EOF){
state.jz[0][0]=1,state.jz[0][1]=233;
for(i=2;i<=n+1;++i)scanf("%lld",&state.jz[0][i]);
tran.jz[0][0]=1,tran.jz[0][1]=3,tran.jz[1][1]=10;
for(i=2;i<=n+1;++i)
for(j=1;j<=i;++j)
tran.jz[j][i]=1;
state=state*(tran^m);
printf("%lld\n",state.jz[0][n+1]);
tran.clear(),state.clear();
}
return 0;
}

233 Matrix的更多相关文章

  1. [HDU5015]233 Matrix

    [HDU5015]233 Matrix 试题描述 In our daily life we often use 233 to express our feelings. Actually, we ma ...

  2. HDU5015 233 Matrix(矩阵高速幂)

    HDU5015 233 Matrix(矩阵高速幂) 题目链接 题目大意: 给出n∗m矩阵,给出第一行a01, a02, a03 ...a0m (各自是233, 2333, 23333...), 再给定 ...

  3. 233 Matrix(hdu5015 矩阵)

    233 Matrix Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total ...

  4. Spring-1-I 233 Matrix(HDU 5015)解题报告及测试数据

    233 Matrix Time Limit:5000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Descript ...

  5. 233 Matrix(矩阵快速幂+思维)

    In our daily life we often use 233 to express our feelings. Actually, we may say 2333, 23333, or 233 ...

  6. ACM学习历程——HDU5015 233 Matrix(矩阵快速幂)(2014陕西网赛)

    Description In our daily life we often use 233 to express our feelings. Actually, we may say 2333, 2 ...

  7. HDU - 5015 233 Matrix(杨辉三角/前缀+矩阵快速幂)

    233 Matrix In our daily life we often use 233 to express our feelings. Actually, we may say 2333, 23 ...

  8. HDU5015 233 Matrix —— 矩阵快速幂

    题目链接:https://vjudge.net/problem/HDU-5015 233 Matrix Time Limit: 10000/5000 MS (Java/Others)    Memor ...

  9. HDU 5015 233 Matrix(网络赛1009) 矩阵快速幂

    先贴四份矩阵快速幂的模板:http://www.cnblogs.com/shangyu/p/3620803.html http://www.cppblog.com/acronix/archive/20 ...

  10. hdu 5015 233 Matrix (矩阵高速幂)

    233 Matrix Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Tota ...

随机推荐

  1. CSS 圣杯布局

    前端的两个经典布局想必大家都有多了解--圣杯布局和双飞翼布局,因为它既能体现你懂HTML结构又能体现出你对DIV+CSS布局的掌握. 事实上,圣杯布局其实和双飞翼布局是一回事.它们实现的都是三栏布局, ...

  2. ueditor使用心得

    UEditor使用手册 配置jdk 1.6+ Apache Tomcat6.0+ Ueditor官网下载 部署 安装好jdk和apache后,我们开始部署代码 我们在apache的安装目录下,找到we ...

  3. c++ 枚举简单举例

    #include <iostream> enum Enumeration{ VAL1, VAL2, VAL3=100, VAL4 }; int main() { using namespa ...

  4. LeetCode 852. Peak Index in a Mountain Array (山脉数组的峰顶索引)

    题目标签:Binary Search 题目给了我们一组 int array,让我们找到数组的 peak. 利用 binary search, 如果数字比它后面那个数字小,说明还在上坡,缩小范围到右半边 ...

  5. [00]APUE:GCC / GDB / Makefile

    http://blog.csdn.net/haoel/article/category/9197 http://blog.csdn.net/haoel/article/details/2886  生成 ...

  6. 神经网络中使用Batch Normalization 解决梯度问题

    BN本质上解决的是反向传播过程中的梯度问题. 详细点说,反向传播时经过该层的梯度是要乘以该层的参数的,即前向有: 那么反向传播时便有: 那么考虑从l层传到k层的情况,有: 上面这个 便是问题所在.因为 ...

  7. Day 10:函数全局变量和局部变量及函数嵌套

    全局变量:在所有函数之外赋值的变量,是全局变量. 局部变量:在函数内的变量是,局部变量 一个函数被调用时,就创建了一个局部作用域.在这个函数内赋值的所有变量,存在于该局部作用域内.该函数返回时,这个局 ...

  8. sklearn参数优化

    学习器模型中一般有两个参数:一类参数可以从数据中学习估计得到,还有一类参数无法从数据中估计,只能靠人的经验进行指定,后一类参数就叫超参数 比如,支持向量机里的C,Kernel,gama,朴素贝叶斯里的 ...

  9. Caused by: java.io.FileNotFoundException: class path resource [com/cxy/springboot/mapping/] cannot be resolved to URL because it does not exist

    java.lang.IllegalStateException: Failed to load ApplicationContext at org.springframework.test.conte ...

  10. XYIXY.COM短网址在线生成,快速、稳定、永久有效,免费开放网址缩短API接口。

    在PHP中使用API 要在PHP程序中使用API,您必须通过file_get_contents或cURL发送GET请求:两者都是可靠的方法,您可以直接复制下面的代码. <?php /**** S ...