No.1. k-近邻算法的特点

No.2. 准备工作,导入类库,准备测试数据

No.3. 构建训练集

No.4. 简单查看一下训练数据集大概是什么样子,借助散点图

No.5. kNN算法的目的是,假如有新的数据加入,需要判断这个新的数据属于数据集中的哪一类
我们添加一个新的数据,重新绘制散点图

No.6. kNN的实现过程——计算x到训练数据集中每个点的距离

No.7. kNN的实现过程——使用argsort来获取距离x由近到远的点的索引组成的向量,进行保存

No.8. kNN的实现过程——指定需要考虑的最近的点的个数k,并获取距离x最近的k个点的y_train中的数据

No.9. kNN的实现过程——统计出属于不同类别的点的个数,并选择票数最多的类别

No.10. kNN的实现过程——对预测结果进行保存,结束。

No.11. 我们可以将kNN算法封装到一个函数中

No.12. 然后我们处理好测试数据,直接调用这个封装好的函数,就能得到预测结果

No.13. 机器学习的一般流程

No.14. k-近邻算法的特殊性

No.15. 使用scikit-learn中的kNN算法

No.16. 模仿scikit-learn封装自己的KNNClassifier类

No.17. 调用自己封装的KNNClassifier类

No.18. k近邻算法的缺点
  • 缺点1:效率低下,这也是kNN算法的最大缺点,如果训练数据集有m个样本,n个特征,则预测一个新数据的时间复杂度为O(m*n)
  • 缺点2:高度数据相关,容易导致预测出错
  • 缺点3:预测结果不具有可解释性
  • 缺点4:维数灾难,随着维数的增加,原本看似很近的两个点的距离会越来越大

第四十六篇 入门机器学习——kNN - k近邻算法(k-Nearest Neighbors)的更多相关文章

  1. 第四十九篇 入门机器学习——数据归一化(Feature Scaling)

    No.1. 数据归一化的目的 数据归一化的目的,就是将数据的所有特征都映射到同一尺度上,这样可以避免由于量纲的不同使数据的某些特征形成主导作用.   No.2. 数据归一化的方法 数据归一化的方法主要 ...

  2. 第四十二篇 入门机器学习——Numpy的基本操作——索引相关

    No.1. 使用np.argmin和np.argmax来获取向量元素中最小值和最大值的索引 No.2. 使用np.random.shuffle将向量中的元素顺序打乱,操作后,原向量发生改变:使用np. ...

  3. 第三十六篇 入门机器学习——Jupyter Notebook中的魔法命令

        No.1.魔法命令的基本形式是:%命令   No.2.运行脚本文件的命令:%run %run 脚本文件的地址 %run C:\Users\Jie\Desktop\hello.py # 脚本一旦 ...

  4. Python之路(第四十六篇)多种方法实现python线程池(threadpool模块\multiprocessing.dummy模块\concurrent.futures模块)

    一.线程池 很久(python2.6)之前python没有官方的线程池模块,只有第三方的threadpool模块, 之后再python2.6加入了multiprocessing.dummy 作为可以使 ...

  5. Jmeter(四十六) - 从入门到精通高级篇 - Jmeter之网页图片爬虫-下篇(详解教程)

    1.简介 上一篇介绍了爬取文章,这一篇宏哥就简单的介绍一下,如何爬取图片然后保存到本地电脑中.网上很多漂亮的壁纸或者是美女.妹子,想自己收藏一些,挨个保存太费时间,那你可以利用爬虫然后批量下载. 2. ...

  6. 第四十六篇、UICollectionView广告轮播控件

    这是利用人的视觉错觉来实现无限轮播,UICollectionView 有很好的重用机制,这只是部分核心代码,后期还要继续完善和代码重构. #import <UIKit/UIKit.h> # ...

  7. 第四十六篇--解析和保存xml文件

    新建assets资源文件夹,右键app --> new --> Folder --> Assets Folder,将info.xml放入此文件夹下面. info.xml <?x ...

  8. 第三十九篇 入门机器学习——Numpy.array的基础操作——合并与分割向量和矩阵

    No.1. 初始化状态 No.2. 合并多个向量为一个向量 No.3. 合并多个矩阵为一个矩阵 No.4. 借助vstack和hstack实现矩阵与向量的快速合并.或多个矩阵快速合并 No.5. 分割 ...

  9. 第三十八篇 入门机器学习——Numpy.array的基本操作——查看向量或矩阵

    No.1. 初始化状态 No.2. 通过ndim来查看数组维数,向量是一维数组,矩阵是二维数组 No.3. 通过shape来查看向量中元素的个数或矩阵中的行列数 No.4. 通过size来查看数组中的 ...

随机推荐

  1. 【内推】微软北京深圳招聘多名Cloud Solution Architect

    Azure is the most comprehensive, innovative and flexible cloud platform today and Microsoft is hirin ...

  2. 42.MySQL数据库安装,及驱动程序选择

    MySQL驱动程序安装: 我们使用Django来操作Mysql,实际上底层还是通过Python来操作的,因此我们想要使用Django来操作mysql,首先还是需要安装一个驱动程序,在Python3中, ...

  3. python 学习笔记之手把手讲解如何使用原生的 urllib 发送网络请求

    urllib.urlopen(url[,data[,proxies]]) : https://docs.python.org/2/library/urllib.html python 中默认自带的网络 ...

  4. java课程学习心得

    首先是枚举,使用enum关键字创建,如:enum {SMALL,MEDIUM,LARGE}之后便可定义Size 的类型变量,并复制为{SMALL,MEDIUM,LARGE};其中一个,注意赋值方法,x ...

  5. redis中获取每个数据类型top-n的bigkeys信息

    需求:之前写的脚本获取redis 最大的top-n的bigkeys,没有区分数据类型,如果要针对每个数据类型的前top-n的bigkeys获取呢? db_ip=5.5.5.101 db_port= p ...

  6. 0010 基于DRF框架开发(03 模型序列化器)

    序列化器:是指从数据库提取数据,转化前端所需要的数据格式并返回到前端. 反序列化器:是指把前端传回的数据,转换成数据库需要的格式,存入数据库. DRF提供了两种序列化器: 模型序列化器:是指和模型关联 ...

  7. Charles抓包问题

    Charles抓包问题 抓包失败解决方法之一:在proxy下的Recording Setting找到解决方法 找到里面的include 把勾去掉,点击OK,然后就恢复正常可以抓包了.

  8. Fastbin attack

    Fastbin Attack 暂时接触到了两种针对堆分配机制中fastbin的攻击方式,double free和house of spirit Double free 基本原理 与uaf是对free之 ...

  9. css权重及计算

    一.一般而言:!important--->行间样式--->id--->class | 属性--->标签选择器--->通配符 二.权重值 !important        ...

  10. MySQL进阶之索引

    一.索引的本质: 数据库查询是数据库的最主要的功能之一,数据库系统的设计者从查询算法的角度对数据库进行了一定的优化. 最基本的顺序查找算法的复杂度为O(n),在数据量很大的时候算法的效率是很低的.虽然 ...