Fraction

Accepted : 168   Submit : 1061
Time Limit : 1000 MS   Memory Limit : 65536 KB

Fraction

Problem Description:

Everyone has silly periods, especially for RenShengGe. It's a sunny day, no
one knows what happened to RenShengGe, RenShengGe says that he wants to change
all decimal fractions between 0 and 1 to fraction. In addtion, he says decimal
fractions are too complicate, and set that [Math Processing Error]

is much more convient than 0.33333... as an example to support his
theory.

So, RenShengGe lists a lot of numbers in textbooks and starts his great work.
To his dissapoint, he soon realizes that the denominator of the fraction may be
very big which kills the simplicity that support of his theory.

But RenShengGe is famous for his persistence, so he decided to sacrifice some
accuracy of fractions. Ok, In his new solution, he confines the denominator in
[1,1000] and figure out the least absolute different fractions with the decimal
fraction under his restriction. If several fractions satifies the restriction,
he chooses the smallest one with simplest formation.

Input

The first line contains a number T(no more than 10000) which represents the
number of test cases.

And there followed T lines, each line contains a finite decimal fraction x
that satisfies [Math Processing
Error]

.

Output

For each test case, transform x in RenShengGe's rule.

Sample Input

3
0.9999999999999
0.3333333333333
0.2222222222222

Sample Output

1/1
1/3
2/9

tip

You can use double to save x;

 
 
 
看上去很复杂的题,其实是水题,不要被题目吓倒!
由于分母是1-1000,所以每次将所有的分母枚举一次,选接近的数就可以了。
 
题意:输入一个小数,输出最接近的分数,必须为最简分数。
 
附上代码:
 
 #include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
using namespace std;
int gcd(int a,int b)
{
int c,t;
if(a<b)
{
t=a,a=b,b=t;
}
while(b)
{
c=a%b;
a=b;
b=c;
}
return a;
}
int main()
{
int i,j,T;
double s,minn;
scanf("%d",&T);
while(T--)
{
scanf("%lf",&s);
int a=,b=;
minn=s;
for(i=; i<=; i++) //枚举1-1000的分母
{
j=s*i+0.5; //求出分子
double f=j*1.0/i; //计算此时分数的结果
double p=fabs(f-s); //与原来的数进行比较
if(minn>p)
{
minn=p;
a=j;
b=i;
}
}
int r=gcd(a,b); //求最大公约数,化简
printf("%d/%d\n",a/r,b/r);
}
return ;
}

XTU 1236 Fraction的更多相关文章

  1. XTU1236 Fraction

    Fraction Accepted : 124 Submit : 806 Time Limit : 1000 MS Memory Limit : 65536 KB Fraction Problem D ...

  2. [LeetCode] Fraction to Recurring Decimal 分数转循环小数

    Given two integers representing the numerator and denominator of a fraction, return the fraction in ...

  3. Slave I/O: Got fatal error 1236

    [起因] 一次zabbix报警,从库[Warning] MySQL-repl was down  # 不知道主库/storage空间小于20%时为什么没有触发trigger [从库错误日志] 1611 ...

  4. BZOJ 1236: SPOJ1433 KPSUM

    Description 用+-号连接1-n所有数字的数位,问结果是多少. Sol 数位DP. \(f[i][j][0/1][0/1]\) 表示长度为 \(i\) 的数字,开头数字是 \(j\) ,是否 ...

  5. POJ 1236 Network of Schools(Tarjan缩点)

    Network of Schools Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 16806   Accepted: 66 ...

  6. poj 1236 Network of Schools(连通图)

    题目链接:http://poj.org/problem?id=1236 题目大意:有一些学校,学校之间可以进行收发邮件,给出学校的相互关系,问:1.至少 要向这些学校发送多少份才能使所有的学校都能获得 ...

  7. 1236 - Pairs Forming LCM -- LightOj1236 (LCM)

    http://lightoj.com/volume_showproblem.php?problem=1236 题目大意: 给你一个数n,让你求1到n之间的数(a,b && a<= ...

  8. Fraction to Recurring Decimal

    Given two integers representing the numerator and denominator of a fraction, return the fraction in ...

  9. 【leetcode】Fraction to Recurring Decimal

    Fraction to Recurring Decimal Given two integers representing the numerator and denominator of a fra ...

随机推荐

  1. 洛谷P1978 集合 [2017年6月计划 数论08]

    P1978 集合 题目描述 集合是数学中的一个概念,用通俗的话来讲就是:一大堆数在一起就构成了集合.集合有如 下的特性: •无序性:任一个集合中,每个元素的地位都是相同的,元素之间是无序的. •互异性 ...

  2. win7下装双系统win8安装及问题

    配置:笔记本 联想S510p 准备:老毛桃UEFI版    8gU盘  win8 X64系统 问题1:出现 error 10099:invalid target partition specified ...

  3. Vue动态加载异步组件

    背景: 目前我们项目都是按组件划分的,然后各个组件之间封装成产品.目前都是采用iframe直接嵌套页面.项目中我们还是会碰到一些通用的组件跟业务之间有通信,这种情况下iframe并不是最好的选择,if ...

  4. goland的下载安装破解并配置

    1.下载地址:https://www.jetbrains.com/go/ 2.安装:简单 3.破解:https://www.cnblogs.com/igoodful/p/9113946.html 4. ...

  5. TP5动态路由配置好了但是报错was not found on this server的原因以及解决方法

    问题:The requested URL /xxxx.html was not found on this server 原因:apache的重写未开启,开启重写后,问题解决, 方法如下: apach ...

  6. Markdown Linux

    如何在Linux下使用Markdown进行文档工作 学习于: http://www.ituring.com.cn/article/10044 Markdown 官网: http://daringfir ...

  7. Anaconda入门使用指南

    打算学习 Python 来做数据分析的你,是不是在开始时就遇到各种麻烦呢? 到底该装 Python2 呢还是 Python3 ? 为什么安装 Python 时总是出错? 怎么安装工具包呢? 为什么提示 ...

  8. ACK容器服务虚拟节点使用阿里云日志服务来收集业务容器日志

    按照这篇博文的介绍,可以在ACK集群上通过Helm的方式部署虚拟节点,提升集群的弹性能力.现在,通过虚拟节点部署的ECI弹性容器实例也支持将stdout输出.日志文件同步到阿里云日志服务(SLS)进行 ...

  9. PHP汉字验证码

    转自:http://www.blhere.com/1167.html 12345678910111213141516171819202122232425262728293031323334353637 ...

  10. LayUI+Echart实现图表

    1.首先 定义一个容器存放图表  需要指定这个容器的大小 <div class="layui-card"> <div class="layui-card ...