Fraction

Accepted : 168   Submit : 1061
Time Limit : 1000 MS   Memory Limit : 65536 KB

Fraction

Problem Description:

Everyone has silly periods, especially for RenShengGe. It's a sunny day, no
one knows what happened to RenShengGe, RenShengGe says that he wants to change
all decimal fractions between 0 and 1 to fraction. In addtion, he says decimal
fractions are too complicate, and set that [Math Processing Error]

is much more convient than 0.33333... as an example to support his
theory.

So, RenShengGe lists a lot of numbers in textbooks and starts his great work.
To his dissapoint, he soon realizes that the denominator of the fraction may be
very big which kills the simplicity that support of his theory.

But RenShengGe is famous for his persistence, so he decided to sacrifice some
accuracy of fractions. Ok, In his new solution, he confines the denominator in
[1,1000] and figure out the least absolute different fractions with the decimal
fraction under his restriction. If several fractions satifies the restriction,
he chooses the smallest one with simplest formation.

Input

The first line contains a number T(no more than 10000) which represents the
number of test cases.

And there followed T lines, each line contains a finite decimal fraction x
that satisfies [Math Processing
Error]

.

Output

For each test case, transform x in RenShengGe's rule.

Sample Input

3
0.9999999999999
0.3333333333333
0.2222222222222

Sample Output

1/1
1/3
2/9

tip

You can use double to save x;

 
 
 
看上去很复杂的题,其实是水题,不要被题目吓倒!
由于分母是1-1000,所以每次将所有的分母枚举一次,选接近的数就可以了。
 
题意:输入一个小数,输出最接近的分数,必须为最简分数。
 
附上代码:
 
 #include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
using namespace std;
int gcd(int a,int b)
{
int c,t;
if(a<b)
{
t=a,a=b,b=t;
}
while(b)
{
c=a%b;
a=b;
b=c;
}
return a;
}
int main()
{
int i,j,T;
double s,minn;
scanf("%d",&T);
while(T--)
{
scanf("%lf",&s);
int a=,b=;
minn=s;
for(i=; i<=; i++) //枚举1-1000的分母
{
j=s*i+0.5; //求出分子
double f=j*1.0/i; //计算此时分数的结果
double p=fabs(f-s); //与原来的数进行比较
if(minn>p)
{
minn=p;
a=j;
b=i;
}
}
int r=gcd(a,b); //求最大公约数,化简
printf("%d/%d\n",a/r,b/r);
}
return ;
}

XTU 1236 Fraction的更多相关文章

  1. XTU1236 Fraction

    Fraction Accepted : 124 Submit : 806 Time Limit : 1000 MS Memory Limit : 65536 KB Fraction Problem D ...

  2. [LeetCode] Fraction to Recurring Decimal 分数转循环小数

    Given two integers representing the numerator and denominator of a fraction, return the fraction in ...

  3. Slave I/O: Got fatal error 1236

    [起因] 一次zabbix报警,从库[Warning] MySQL-repl was down  # 不知道主库/storage空间小于20%时为什么没有触发trigger [从库错误日志] 1611 ...

  4. BZOJ 1236: SPOJ1433 KPSUM

    Description 用+-号连接1-n所有数字的数位,问结果是多少. Sol 数位DP. \(f[i][j][0/1][0/1]\) 表示长度为 \(i\) 的数字,开头数字是 \(j\) ,是否 ...

  5. POJ 1236 Network of Schools(Tarjan缩点)

    Network of Schools Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 16806   Accepted: 66 ...

  6. poj 1236 Network of Schools(连通图)

    题目链接:http://poj.org/problem?id=1236 题目大意:有一些学校,学校之间可以进行收发邮件,给出学校的相互关系,问:1.至少 要向这些学校发送多少份才能使所有的学校都能获得 ...

  7. 1236 - Pairs Forming LCM -- LightOj1236 (LCM)

    http://lightoj.com/volume_showproblem.php?problem=1236 题目大意: 给你一个数n,让你求1到n之间的数(a,b && a<= ...

  8. Fraction to Recurring Decimal

    Given two integers representing the numerator and denominator of a fraction, return the fraction in ...

  9. 【leetcode】Fraction to Recurring Decimal

    Fraction to Recurring Decimal Given two integers representing the numerator and denominator of a fra ...

随机推荐

  1. Leetcode54. Spiral Matrix螺旋矩阵

    给定一个包含 m x n 个元素的矩阵(m 行, n 列),请按照顺时针螺旋顺序,返回矩阵中的所有元素. 示例 1: 输入: [ [ 1, 2, 3 ], [ 4, 5, 6 ], [ 7, 8, 9 ...

  2. Leetcode581.Shortest Unsorted Continuous Subarray最短无序连续子数组

    给定一个整数数组,你需要寻找一个连续的子数组,如果对这个子数组进行升序排序,那么整个数组都会变为升序排序. 你找到的子数组应是最短的,请输出它的长度. 示例 1: 输入: [2, 6, 4, 8, 1 ...

  3. C# 配置文件 Appconfig

    WinForm或WPF应用程序有时候需要保存用户的一些配置就要用到配置文件,而微软为我们的应用程序提供了Application Configuration File,就是应用程序配置文件,可以很方便的 ...

  4. Excel按照某一列的重复数据设置隔行变颜色效果

    问题:如图所示,想按照A列中的重复数据设置隔重复行变颜色的效果,能否通过条件格式命令实现. 方法1:(最佳答案) 条件格式公式:=MOD(SUMPRODUCT(--($A$1:$A1<>$ ...

  5. reactjs scrollTop

    问题1: 单页应用开发时,当在A页面滚动滚动条后,点击进入B页面,滚动条保持在A页面的滚动位置. 目标: 同级路由切换时,滚动条回滚到页面顶端. 解决方案: //在componentDidMount周 ...

  6. POJ3697

    /* Memory Time 7096K 2641MS */ #include <iostream> #include <string> using namespace std ...

  7. 使用JS如何消除一个数组里重复的元素

    JS: var arrData = [1,3,5,7,7,8,9,3,10,8,"sdsdsds","sss","ffff","s ...

  8. Java 和 DynamoDB

    https://docs.aws.amazon.com/zh_cn/amazondynamodb/latest/developerguide/GettingStarted.Java.html 官方

  9. win10上修改docker的镜像文件存储位置

    记住:修改的是docker从服务器上拉下来的镜像文件存储位置(本地),是不是镜像源地址(服务器) 首先 win10下的docker有可视化操作界面和命令行操作,下载了docker-ce.exe双击后就 ...

  10. jmeter的关联-正则表达式的应用

    LoadRunnner中的关联为web_reg_save_param,查找左右边界,下次请求的时候会用到上次请求服务器返回的数据,那么我们把符合左右边界的数据保存下来,以便下次请求的时候用到. jme ...