Fraction

Accepted : 168   Submit : 1061
Time Limit : 1000 MS   Memory Limit : 65536 KB

Fraction

Problem Description:

Everyone has silly periods, especially for RenShengGe. It's a sunny day, no
one knows what happened to RenShengGe, RenShengGe says that he wants to change
all decimal fractions between 0 and 1 to fraction. In addtion, he says decimal
fractions are too complicate, and set that [Math Processing Error]

is much more convient than 0.33333... as an example to support his
theory.

So, RenShengGe lists a lot of numbers in textbooks and starts his great work.
To his dissapoint, he soon realizes that the denominator of the fraction may be
very big which kills the simplicity that support of his theory.

But RenShengGe is famous for his persistence, so he decided to sacrifice some
accuracy of fractions. Ok, In his new solution, he confines the denominator in
[1,1000] and figure out the least absolute different fractions with the decimal
fraction under his restriction. If several fractions satifies the restriction,
he chooses the smallest one with simplest formation.

Input

The first line contains a number T(no more than 10000) which represents the
number of test cases.

And there followed T lines, each line contains a finite decimal fraction x
that satisfies [Math Processing
Error]

.

Output

For each test case, transform x in RenShengGe's rule.

Sample Input

3
0.9999999999999
0.3333333333333
0.2222222222222

Sample Output

1/1
1/3
2/9

tip

You can use double to save x;

 
 
 
看上去很复杂的题,其实是水题,不要被题目吓倒!
由于分母是1-1000,所以每次将所有的分母枚举一次,选接近的数就可以了。
 
题意:输入一个小数,输出最接近的分数,必须为最简分数。
 
附上代码:
 
 #include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
using namespace std;
int gcd(int a,int b)
{
int c,t;
if(a<b)
{
t=a,a=b,b=t;
}
while(b)
{
c=a%b;
a=b;
b=c;
}
return a;
}
int main()
{
int i,j,T;
double s,minn;
scanf("%d",&T);
while(T--)
{
scanf("%lf",&s);
int a=,b=;
minn=s;
for(i=; i<=; i++) //枚举1-1000的分母
{
j=s*i+0.5; //求出分子
double f=j*1.0/i; //计算此时分数的结果
double p=fabs(f-s); //与原来的数进行比较
if(minn>p)
{
minn=p;
a=j;
b=i;
}
}
int r=gcd(a,b); //求最大公约数,化简
printf("%d/%d\n",a/r,b/r);
}
return ;
}

XTU 1236 Fraction的更多相关文章

  1. XTU1236 Fraction

    Fraction Accepted : 124 Submit : 806 Time Limit : 1000 MS Memory Limit : 65536 KB Fraction Problem D ...

  2. [LeetCode] Fraction to Recurring Decimal 分数转循环小数

    Given two integers representing the numerator and denominator of a fraction, return the fraction in ...

  3. Slave I/O: Got fatal error 1236

    [起因] 一次zabbix报警,从库[Warning] MySQL-repl was down  # 不知道主库/storage空间小于20%时为什么没有触发trigger [从库错误日志] 1611 ...

  4. BZOJ 1236: SPOJ1433 KPSUM

    Description 用+-号连接1-n所有数字的数位,问结果是多少. Sol 数位DP. \(f[i][j][0/1][0/1]\) 表示长度为 \(i\) 的数字,开头数字是 \(j\) ,是否 ...

  5. POJ 1236 Network of Schools(Tarjan缩点)

    Network of Schools Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 16806   Accepted: 66 ...

  6. poj 1236 Network of Schools(连通图)

    题目链接:http://poj.org/problem?id=1236 题目大意:有一些学校,学校之间可以进行收发邮件,给出学校的相互关系,问:1.至少 要向这些学校发送多少份才能使所有的学校都能获得 ...

  7. 1236 - Pairs Forming LCM -- LightOj1236 (LCM)

    http://lightoj.com/volume_showproblem.php?problem=1236 题目大意: 给你一个数n,让你求1到n之间的数(a,b && a<= ...

  8. Fraction to Recurring Decimal

    Given two integers representing the numerator and denominator of a fraction, return the fraction in ...

  9. 【leetcode】Fraction to Recurring Decimal

    Fraction to Recurring Decimal Given two integers representing the numerator and denominator of a fra ...

随机推荐

  1. Kth Minimum Clique

    Kth Minimum Clique 题目描述 Given a vertex-weighted graph with N vertices, find out the K-th minimum wei ...

  2. 【python之路20】函数作为参数

    1.函数可以作为参数 1)函数名相当于变量指向函数 2)函数名后面加括号表示调用函数 #!usr/bin/env python # -*- coding:utf-8 -*- def f1(args): ...

  3. CF1067E Random Forest Rank

    CF1067E Random Forest Rank 可以证明: 一个树的邻接矩阵的秩,等于最大匹配数*2(虽然我只能证明下界是最大匹配) 而树的最大匹配可以贪心, 不妨用DP模拟这个过程 f[x][ ...

  4. NYoj 155最短路

    //dij #include<stdio.h> #include<string.h> #include<queue> using namespace std; #d ...

  5. DOM,jquery,vue

    DOM 部分引用自引用自七色花的姐姐 1.DOM全称 Document Object Model,即文档对象模型,它允许脚本(js)控制Web页面.窗口和文档 2.DOM的作用 做网页的都知道,想要做 ...

  6. SpringBoot启动报错Failed to determine a suitable driver class

    SpringBoot启动报错如下 Error starting ApplicationContext. To display the conditions report re-run your app ...

  7. js关闭或者刷新页面后执行事件

    onbeforeunload 使用方法 window.onbeforeunload=function(){ return ''; } 有返回值才能弹出显示,或者有需要执行的事件也行.

  8. kaptcha验证码的使用(转)

    使用kaptcha可以方便的配置: 验证码的字体 验证码字体的大小 验证码字体的字体颜色 验证码内容的范围(数字,字母,中文汉字!) 验证码图片的大小,边框,边框粗细,边框颜色 验证码的干扰线(可以自 ...

  9. Vue项目中出现Loading chunk {n} failed问题的解决方法

    最近有个Vue项目中会偶尔出现Loading chunk {n} failed的报错,报错来自于webpack进行code spilt之后某些bundle文件lazy loading失败.但是这个问题 ...

  10. 【水滴石穿】ReactNativeDemo

    这个博主他的功底算是特别棒的了,能够把一些基础的例子,通过精巧的方式布局在一个小的demo里面 很值得我学习 放上博主的链接:https://github.com/jianiuqi/ReactNati ...