给出两幅 \(n(\leq 400)\) 个点的无向图 \(G_1 ,G_2\),对于 \(G_1\) 的每一颗生成树,它的权值定义为有多少条边在 \(G_2\) 中出现。求 \(G_1\) 所有生成树的权值和。

Solution

很容易想到,设 \(G_1\) 中每条边的权值,这条边在 \(G_2\) 中出现则权值为 \(1\),否则权值为 \(0\)。

现在就真的是求所有生成树的边权和的权值和了。

然而标准的 Matrix-Tree Theorem 求的是生成树的边权积的和。

现在我们定义每条只出现在 \(G_1\) 中的边边权为 \(1\),同时出现在 \(G_1,G_2\) 中的边权为 \(x\),则基尔霍夫矩阵的每个元素嗾使一个多项式,记为 \(B(x)\)。

\(\det B(x)\) 是一个 \(n-1\) 次多项式 \(f(x) = \sum a_i x^i\),那么其中 \(a_i\) 就是使用了 \(i\) 条公共变的生成树个数。

于是答案就是 \(f'(1)=\sum ia_i=\det B(1) \cdot \sum_i \sum_j (B^{-1}(1))_{i,j}\cdot B'(1)_{i,j}\)

于是用 Gauss 消元法求行列式和逆矩阵即可

#include <bits/stdc++.h>
using namespace std; #define int long long
const int N = 405;
const int mod = 998244353; namespace mat {
int f[N][N<<1],a[N][N],n;
inline void exgcd(int a,int b,int &x,int &y) {
if(!b) {
x=1,y=0;
return;
}
exgcd(b,a%b,x,y);
int t=x;
x=y,y=t-(a/b)*y;
} inline int inv(int a,int b) {
int x,y;
return exgcd(a,b,x,y),(x%b+b)%b;
}
int getdet() {
int det=1;
int flag=0;
for(int i=1; i<=n; i++) {
for(int j=i+1; j<=n; j++) {
int x=i,y=j;
while(a[y][i]!=0) {
int t=a[x][i]*inv(a[y][i],mod)%mod;
for(int k=i; k<=n; k++) (a[x][k]-=t*a[y][k]%mod)%=mod;
swap(x,y);
}
if(x!=i) {
for(int k=1; k<=n; k++) {
swap(a[x][k],a[i][k]);
}
flag^=1;
}
}
if(a[i][i]==0) return 0;
det=det*a[i][i]%mod;
}
if(flag) det=-det;
det%=mod; det+=mod; det%=mod;
return det;
} int solve() {
int m=n*2;
for(int i=1;i<=n;i++) {
for(int j=1;j<=n;j++) a[i][j]=f[i][j], f[i][j+n]=0;
}
int ret= getdet();
for(int i=1; i<=n; ++i) {
f[i][n+i]=1;
}
for(int i=1; i<=n; ++i) {
for(int j=i; j<=n; j++)
if(f[j][i]) {
for(int k=1; k<=m; k++)
swap(f[i][k],f[j][k]);
break;
}
if(!f[i][i]) {
return 0;
}
int r=inv(f[i][i],mod);
for(int j=i; j<=m; ++j)
f[i][j]=f[i][j]*r%mod;
for(int j=1; j<=n; ++j)
if(j!=i) {
r=f[j][i];
for(int k=i; k<=m; ++k)
f[j][k]=(f[j][k]-r*f[i][k]%mod+mod)%mod;
}
}
return ret;
}
} int n,b[N][N],bd[N][N];
char g1[N][N],g2[N][N]; signed main() {
cin>>n;
for(int i=1;i<=n;i++) {
cin>>g1[i]+1;
}
for(int i=1;i<=n;i++) {
cin>>g2[i]+1;
}
for(int i=1;i<=n;i++) {
for(int j=1;j<i;j++) {
if(g1[i][j]=='1') b[i][j]=-1, b[j][i]=-1, b[i][i]++, b[j][j]++;
if(g1[i][j]=='1' && g2[i][j]=='1') bd[i][j]=-1, bd[j][i]=-1, bd[i][i]++, bd[j][j]++;
}
}
for(int i=1;i<n;i++) {
for(int j=1;j<n;j++) {
mat::f[i][j]=b[i][j];
}
}
--n;
mat::n=n;
int det=mat::solve();
int ans=0;
/*for(int i=1;i<=n;i++) {
for(int j=1;j<=n;j++) cout<<b[i][j]<<" ";
cout<<endl;
}
for(int i=1;i<=n;i++) {
for(int j=1;j<=n;j++) cout<<bd[i][j]<<" ";
cout<<endl;
}
for(int i=1;i<=n;i++) {
for(int j=1;j<=n;j++) cout<<mat::f[i][j+n]<<" ";
cout<<endl;
}*/
for(int i=1;i<=n;i++) {
for(int j=1;j<=n;j++) {
ans+=mat::f[i][j+n]*bd[i][j];
ans%=mod;
ans+=mod;
ans%=mod;
}
}
//cout<<ans<<" "<<det<<endl;
cout<<((ans*det)%mod+mod)%mod;
}

Wannafly Camp 2020 Day 1D 生成树 - 矩阵树定理,高斯消元的更多相关文章

  1. [spoj104][Highways] (生成树计数+矩阵树定理+高斯消元)

    In some countries building highways takes a lot of time... Maybe that's because there are many possi ...

  2. BZOJ4031 [HEOI2015]小Z的房间 【矩阵树定理 + 高斯消元】

    题目链接 BZOJ4031 题解 第一眼:这不裸的矩阵树定理么 第二眼:这个模\(10^9\)是什么鬼嘛QAQ 想尝试递归求行列式,发现这是\(O(n!)\)的.. 想上高斯消元,却又处理不了逆元这个 ...

  3. P3317 [SDOI2014]重建 变元矩阵树定理 高斯消元

    传送门:https://www.luogu.org/problemnew/show/P3317 这道题的推导公式还是比较好理解的,但是由于这个矩阵是小数的,要注意高斯消元方法的使用: #include ...

  4. CF917D-Stranger Trees【矩阵树定理,高斯消元】

    正题 题目链接:https://www.luogu.com.cn/problem/CF917D 题目大意 给出\(n\)个点的一棵树,对于每个\(k\)求有多少个\(n\)个点的树满足与给出的树恰好有 ...

  5. 洛谷4208 JSOI2008最小生成树计数(矩阵树定理+高斯消元)

    qwq 这个题目真的是很好的一个题啊 qwq 其实一开始想这个题,肯定是无从下手. 首先,我们会发现,对于无向图的一个最小生成树来说,只有当存在一些边与内部的某些边权值相同的时候且能等效替代的时候,才 ...

  6. 【BZOJ3534】【Luogu P3317】 [SDOI2014]重建 变元矩阵树,高斯消元

    题解看这里,主要想说一下以前没见过的变元矩阵树还有前几个题见到的几个小细节. 邻接矩阵是可以带权值的.求所有生成树边权和的时候我们有一个基尔霍夫矩阵,是度数矩阵减去邻接矩阵.而所谓变元矩阵树实际上就是 ...

  7. SP104 Highways (矩阵树,高斯消元)

    矩阵树定理裸题 //#include <iostream> #include <cstdio> #include <cstring> #include <al ...

  8. 【bzoj2467】[中山市选2010]生成树 矩阵树定理

    题目描述 有一种图形叫做五角形圈.一个五角形圈的中心有1个由n个顶点和n条边组成的圈.在中心的这个n边圈的每一条边同时也是某一个五角形的一条边,一共有n个不同的五角形.这些五角形只在五角形圈的中心的圈 ...

  9. Wannafly挑战赛23F-计数【原根,矩阵树定理,拉格朗日插值】

    正题 题目链接:https://ac.nowcoder.com/acm/contest/161/F 题目大意 给出\(n\)个点的一张图,求它的所有生成树中权值和为\(k\)的倍数的个数.输出答案对\ ...

随机推荐

  1. Solr搜索解析及查询解析器用法概述

    一.简介 大多数查询都使用 了标准的Solr语法.这种语法是Solr最常见的,由默认查询解析器负责处理.Solr的默认查询解析器是Lucene查询解析器[LuceneQParserPlugin类实现] ...

  2. 消息队列MQ集合

    消息队列MQ集合 消息队列简介 kafka简介 Centos7部署zookeeper和Kafka集群 .

  3. 交换机 路由器 防火墙asa 安全访问、配置 方式

    这里交换机 路由器 暂时统称为  网络设备 我们一般管理网络设备采用的几种方法 一般来说,可以用5种方式来设置路由器: 1. Console口接终端或运行终端仿真软件的微机(第一次配置要使用此方式) ...

  4. [Redis-CentOS7]Redis发布订阅操作(七)

    发布订阅 发布:打电话 订阅:接电话 订阅频道 127.0.0.1:6379> SUBSCRIBE msg Reading messages... (press Ctrl-C to quit) ...

  5. gRPC in ASP.NET Core 3.x - gRPC 简介

    gRPC的结构 在我们搭建gRPC通信系统之前,首先需要知道gRPC的结构组成. 首先,需要一个server(服务器),它用来接收和处理请求,然后返回响应. 既然有server,那么肯定有client ...

  6. 杭电1007-----C语言实现

    这道题花了好久的时间才做出来,刚开始没有思路,最后看了网上的解答,好难得样子,每次都没有看完,但是掌握了大概思想,今天试着做了一下,已ac 主要思想:先将点对按照x排序,再在x排好序的基础上按照y来排 ...

  7. JMeter接口测试-提取动态列表最后一个值的两种方法

    前言 在用JMeter做接口测试时,我们经常会遇到,一个接口返回一个json串,在这个json串中,某个节点的值是一个列表,而且这个列表的长度是动态变化的.今天我们来学习两种提取动态列表最后一个值的两 ...

  8. 详解Net Core Web Api项目与在NginX下发布

    前言 本文将介绍Net Core的一些基础知识和如何NginX下发布Net Core的WebApi项目. 测试环境 操作系统:windows 10 开发工具:visual studio 2019 框架 ...

  9. CNN目标检测系列算法发展脉络——学习笔记(一):AlexNet

    在咨询了老师的建议后,最近开始着手深入的学习一下目标检测算法,结合这两天所查到的资料和个人的理解,准备大致将CNN目标检测的发展脉络理一理(暂时只讲CNN系列部分,YOLO和SSD,后面会抽空整理). ...

  10. leetcode-简单-栈-逆波兰表达式

    根据逆波兰表示法,求表达式的值. 有效的运算符包括 +, -, *, / .每个运算对象可以是整数,也可以是另一个逆波兰表达式. 说明:  整数除法只保留整数部分. 给定逆波兰表达式总是有效的.换句话 ...