2018 CCPC 网络赛
1. spend ai dollars to buy a Power Cube
2. resell a Power Cube and get ai dollars if he has at least one Power Cube
3. do nothing
Obviously, Noswal can own more than one Power Cubes at the same time. After going to the n
cities, he will go back home and stay away from the cops. He wants to
know the maximum profit he can earn. In the meanwhile, to lower the
risks, he wants to minimize the times of trading (include buy and sell)
to get the maximum profit. Noswal is a foxy and successful businessman
so you can assume that he has infinity money at the beginning.
The first line has an integer n. (1≤n≤105)
The second line has n integers a1,a2,…,an where ai means the trading price (buy or sell) of the Power Cube in the i-th city. (1≤ai≤109)
It is guaranteed that the sum of all n is no more than 5×105.
each case, print one line with two integers —— the maximum profit and
the minimum times of trading to get the maximum profit.
4
1 2 10 9
5
9 5 9 10 5
2
2 1
5 2
0 0
In the first case, he will buy in 1, 2 and resell in 3, 4. profit = - 1 - 2 + 10 + 9 = 16
In the second case, he will buy in 2 and resell in 4. profit = - 5 + 10 = 5
In the third case, he will do nothing and earn nothing. profit = 0
题意 : 有 n 个城市,在某一个城市可以进行 3 次操作,买一件物品,卖一件物品,或什么也不做,开始的时候有无限的钱,问最终最大的收益是多少?
思路分析 : 贪心 , 从第一个城市开始,手头有东西,能卖则卖,卖不掉就买,最后剩下的退掉,但是卖的地方写法很奇特,就是每卖出去一个,我们就压进队列中两个这个元素,第一次弹出队的时候表示反悔了,第二次弹出队的时候表示当时也是将此物品买了,并没有卖出,为什么是这样,纸上写写就知道了
代码示例 :
#include <bits/stdc++.h>
using namespace std;
#define ll long long
const ll maxn = 1e5+5;
ll n; struct node
{
ll x, id;
bool operator< (const node &v)const{
if (x == v.x) return id < v.id;
return x > v.x;
}
};
priority_queue<node>que; int main () {
ll t;
ll x; cin >> t;
while(t--){
scanf("%lld", &n);
ll ans = 0, cnt = 0;
while(!que.empty()) que.pop();
for(ll i = 1; i <= n; i++){
scanf("%lld", &x);
if (!que.empty() && que.top().x < x) {
if (que.top().id != 2) cnt++;
//printf("===== %lld\n", que.top().id);
ans += x-que.top().x;
que.push({x, 2}); que.push({x, 1});
que.pop();
}
else {
que.push({x, 0});
}
//printf("++++ %lld %lld\n", i, cnt);
}
printf("%lld %lld\n", ans, cnt*2);
}
return 0;
}
Problem Description
There are N vertices connected by N?1 edges, each edge has its own length.
The set { 1,2,3,…,N } contains a total of N! unique permutations, let’s say the i-th permutation is Pi and Pi,j is its j-th number.
For the i-th permutation, it can be a traverse sequence of the tree with N vertices, which means we can go from the Pi,1-th vertex to the Pi,2-th vertex by the shortest path, then go to the Pi,3-th vertex ( also by the shortest path ) , and so on. Finally we’ll reach the Pi,N-th vertex, let’s define the total distance of this route as D(Pi) , so please calculate the sum of D(Pi) for all N! permutations.
Input
There are 10 test cases at most.
The first line of each test case contains one integer N ( 1≤N≤105 ) .
For the next N?1 lines, each line contains three integer X, Y and L, which means there is an edge between X-th vertex and Y-th of length L ( 1≤X,Y≤N,1≤L≤109 ) .
Output
For each test case, print the answer module 109+7 in one line.
Sample Input
3
1 2 1
2 3 1
3
1 2 1
1 3 2
Sample Output
16
24
题意 : 初始状态下给你一棵树,同时给你边权上的值,此时整棵树的值为所有边权的累加,然后让你求 n! 下树的边权的累加的和。
思路分析 :加上 n! 这个限制条件,题目差不多就转换成初始状态下任意点对的距离和,很像,但不完全是
在这个问题中可以发现的任意一个点对在 n! 中出现的次数是 2*(n-1)! 的,任意打一个表就可以看出,然后在某一个图下,我是计算的时候是枚举任意一条边的,出现的次数等于边左边的点乘以边右边的点,此时在乘以 2*(n-1)! 即可
代码示例 :
#include <bits/stdc++.h>
using namespace std;
#define ll long long
const ll maxn = 1e5+5;
const ll mod = 1e9+7; ll n;
ll pp[maxn];
void init() {
pp[0] = 1;
for(ll i = 1; i <= 100000; i++){
pp[i] = pp[i-1]*i%mod;
}
}
struct node
{
ll to, cost;
};
vector<node>ve[maxn];
ll size[maxn];
ll ans; void dfs(ll x, ll fa, ll w){
for(ll i = 0; i < ve[x].size(); i++){
ll to = ve[x][i].to;
if (to == fa) continue;
dfs(to, x, ve[x][i].cost);
size[x] += size[to];
}
size[x] += 1; ans += size[x]*(n-size[x])%mod*w%mod*2%mod*pp[n-1]%mod;
ans %= mod;
} int main () {
ll u, v, w;
init(); while(~scanf("%lld", &n)){ for(int i = 1; i <= 100000; i++) ve[i].clear(); for(ll i = 1; i < n; i++){
scanf("%lld%lld%lld", &u, &v, &w);
ve[u].push_back({v, w});
ve[v].push_back({u, w});
}
memset(size, 0, sizeof(size));
ans = 0;
dfs(1, 0, 0);
printf("%lld\n", ans);
}
return 0;
}
YJJ's Salesman
Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 1369 Accepted Submission(s): 483
Problem Description
YJJ is a salesman who has traveled through western country. YJJ is always on journey. Either is he at the destination, or on the way to destination.
One day, he is going to travel from city A to southeastern city B. Let us assume that A is (0,0) on the rectangle map and B (109,109). YJJ is so busy so he never turn back or go twice the same way, he will only move to east, south or southeast, which means, if YJJ is at (x,y) now (0≤x≤109,0≤y≤109), he will only forward to (x+1,y), (x,y+1) or (x+1,y+1).
On the rectangle map from (0,0) to (109,109), there are several villages scattering on the map. Villagers will do business deals with salesmen from northwestern, but not northern or western. In mathematical language, this means when there is a village k on (xk,yk) (1≤xk≤109,1≤yk≤109), only the one who was from (xk?1,yk?1) to (xk,yk) will be able to earn vk dollars.(YJJ may get different number of dollars from different village.)
YJJ has no time to plan the path, can you help him to find maximum of dollars YJJ can get.
Input
The first line of the input contains an integer T (1≤T≤10),which is the number of test cases.
In each case, the first line of the input contains an integer N (1≤N≤105).The following N lines, the k-th line contains 3 integers, xk,yk,vk (0≤vk≤103), which indicate that there is a village on (xk,yk) and he can get vk dollars in that village.
The positions of each village is distinct.
Output
The maximum of dollars YJJ can get.
Sample Input
1
3
1 1 1
1 2 2
3 3 1
Sample Output
3
题意 : 在一张 10^9 * 10^9 的图中有 1e5 个点,规定只能向右走,向下走,向右下走,只有当往右下走的时候进入格点才会获得此中的分数,问最终最大的得分是多少?
思路分析 : 首先离散一下,将图变成 1e5*1e5 的图,我们一列一列的去维护,对于某一列中的某个点,如果想要得分,一定是他前一列中他所在位置上方的点转移下来的,就按照这个思路写就可以了
代码示例:
#include <bits/stdc++.h>
using namespace std;
#define ll long long
const ll maxn = 1e5+5;
#define lson k<<1
#define rson k<<1|1 ll n;
ll x[maxn], y[maxn];
struct pp
{
ll u, v, w; bool operator< (const pp &q)const{
if (u == q.u) return v < q.v;
return u < q.u;
}
}arr[maxn]; struct node
{
ll l, r;
ll mm;
}t[maxn<<2]; void build(ll l, ll r, ll k){
t[k].l = l, t[k].r = r; t[k].mm = 0;
if (l == r) return;
ll mid = (l+r)>>1;
build(l, mid, lson);
build(mid+1, r, rson);
} ll query(ll l, ll r, ll k){
if (l <= t[k].l && t[k].r <= r){
return t[k].mm;
}
ll mid = (t[k].l+t[k].r)>>1;
ll res = 0;
if (l <= mid) res = max(res, query(l, r, lson));
if (r > mid) res = max(res, query(l, r, rson));
return res;
} void update(ll pos, ll val, ll k){
if (t[k].l == t[k].r) {
t[k].mm = max(t[k].mm, val);
return;
}
ll mid = (t[k].l+t[k].r)>>1;
if (pos <= mid) update(pos, val, lson);
else update(pos, val, rson);
t[k].mm = max(t[lson].mm, t[rson].mm);
} int main () {
ll T; cin >> T;
while(T--){
scanf("%lld", &n);
ll w;
for(ll i = 1; i <= n; i++){
scanf("%lld%lld%lld", &x[i], &y[i], &w);
arr[i] = {x[i], y[i], w};
}
sort(x+1, x+1+n); sort(y+1, y+1+n);
ll ss = unique(x+1, x+1+n)-x;
ll ss2 = unique(y+1, y+1+n)-y;
for(ll i = 1; i <= n; i++){
arr[i].u = lower_bound(x+1, x+ss, arr[i].u)-x;
arr[i].v = lower_bound(y+1, y+ss2, arr[i].v)-y;
}
sort(arr+1, arr+1+n);
// for(ll i = 1; i <= n; i++) {
// prllf("+++ %d %d %d\n", arr[i].u, arr[i].v, arr[i].w);
// }
build(1, n, 1);
for(ll i = 1; i <= n; i++){
ll p = i+1;
while(arr[p].u == arr[i].u) p++;
for(ll j = p-1; j >= i; j--){
ll f = query(1, arr[j].v-1, 1);
update(arr[j].v, arr[j].w+f, 1);
}
i = p-1;
}
printf("%lld\n", t[1].mm);
} return 0;
}
2018 CCPC 网络赛的更多相关文章
- 2018 CCPC网络赛
2018 CCPC网络赛 Buy and Resell 题目描述:有一种物品,在\(n\)个地点的价格为\(a_i\),现在一次经过这\(n\)个地点,在每个地点可以买一个这样的物品,也可以卖出一个物 ...
- 2018 CCPC网络赛 几道数学题
1002 Congruence equation 题目链接 : http://acm.hdu.edu.cn/showproblem.php?pid=6439 题解 : https://www.zyb ...
- 2018 CCPC网络赛 hdu6444 Neko's loop
题目描述: Neko has a loop of size n.The loop has a happy value ai on the i−th(0≤i≤n−1) grid. Neko likes ...
- 2018 CCPC 网络赛 Buy and Resell
The Power Cube is used as a stash of Exotic Power. There are n cities numbered 1,2,…,n where allowed ...
- 2018 CCPC网络赛 1010 hdu 6447 ( 树状数组优化dp)
链接:http://acm.hdu.edu.cn/showproblem.php?pid=6447 思路:很容易推得dp转移公式:dp[i][j] = max(dp[i][j-1],dp[i-1][j ...
- 【2018 CCPC网络赛 1004】Find Integer(勾股数+费马大定理)
Problem Description people in USSS love math very much, and there is a famous math problem . give yo ...
- 【2018 CCPC网络赛】1001 - 优先队列&贪心
题目地址:http://acm.hdu.edu.cn/showproblem.php?pid=6438 获得最大的利润,将元素依次入栈,期中只要碰到比队顶元素大的,就吧队顶元素卖出去,答案加上他们期中 ...
- 【2018 CCPC网络赛】1009 - 树
题目地址:http://acm.hdu.edu.cn/showproblem.php?pid=6446 题目给出的数据为一棵树,dfs扫描每条边,假设去掉某条边,则左边 x 个点,右边 n-x 个点, ...
- 【2018 CCPC网络赛】1003 - 费马小定理
题目地址:http://acm.hdu.edu.cn/showproblem.php?pid=6440 这题主要是理解题意: 题意:定义一个加法和乘法,使得 (m+n)p = mp+np; 其中给定 ...
- 【2018 CCPC网络赛】1004 - 费马大定理&数学
题目地址:http://acm.hdu.edu.cn/showproblem.php?pid=6441 Knowledge Point: 1. 费马大定理:当整数n >2时,关于x, y, z的 ...
随机推荐
- [转]Spring 注解大全与详解
Spring使用的注解大全和解释 注解 解释 @Controller 组合注解(组合了@Component注解),应用在MVC层(控制层),DispatcherServlet会自动扫描注解了此注解的类 ...
- git学习六:git提交忽略不必要的文件或文件夹
创建maven项目,使用git提交,有时需要忽略不必要的文件或文件夹,只保留一些基本. 例如如下截图,实际开发中我们只需提交:src,.gitignore,pom.xml 而自己项目文件一般都保留,但 ...
- QQ三方登录
申请了十天,最终通过了审核,能够上线了,事实上申请的第一天,站点的qq登录已经做好了,而且能够用測试帐号登录,但提交审核后,总是通只是,提示:您的站点审核未通过.原因是"未放置QQ登录but ...
- the password has expired
Oracle提示错误消息ORA-28001: the password has expired,是由于Oracle11G的新特性所致, Oracle11G创建用户时缺省密码过期限制是180天(即6个月 ...
- LuoguP3066 逃跑的BarnRunning Away From…
LuoguP3066 先吐槽一下,这道题名字好长啊 一个非常明显的思路,利用倍增数组不断向上跳.直到数值大于\(L\),然后直接差分统计答案就好了. 这种ZROI也考过,不多赘述了. 我们来考虑主席树 ...
- 【转】Elasticsearch学习笔记
一.常用术语 索引(Index).类型(Type).文档(Document) 索引Index是含有相同属性的文档集合.索引在ES中是通过一个名字来识别的,且必须是英文字母小写,且不含中划线(-):可类 ...
- mybatis的核心配置文件
<?xml version="1.0" encoding="UTF-8" ?><!DOCTYPE configurationPUBLIC &q ...
- hibernate_检索策略
一.概述 检索策略分三大块,类级别检索策略和关联级别检测策略. 类级别检索策略:get.load. 关联级别检索策略:order.getCustomer().getName() 上面这两种应该是看得懂 ...
- 前端——JS
目录 JavaScript概述 ECMAScript和JavaScript的关系 ECMAScript的历史 JavaScript引入方式 Script标签内写代码 引入额外的JS文件 JavaScr ...
- Jmeter配置元件——JDBC Connection Configuration参数化
在昨天Jmeter配置元件——CSV DataSet Config参数化一文中,有提到,在参数化时,还可以使用JDBC Connection Configuration配置元件实现,具体如何实现,如何 ...