The Power Cube is used as a stash of Exotic Power. There are n cities numbered 1,2,…,n where allowed to trade it. The trading price of the Power Cube in the i-th city is ai dollars per cube. Noswal is a foxy businessman and wants to quietly make a fortune by buying and reselling Power Cubes. To avoid being discovered by the police, Noswal will go to the i-th city and choose exactly one of the following three options on the i-th day:

1. spend ai dollars to buy a Power Cube
2. resell a Power Cube and get ai dollars if he has at least one Power Cube
3. do nothing

Obviously, Noswal can own more than one Power Cubes at the same time. After going to the n
cities, he will go back home and stay away from the cops. He wants to
know the maximum profit he can earn. In the meanwhile, to lower the
risks, he wants to minimize the times of trading (include buy and sell)
to get the maximum profit. Noswal is a foxy and successful businessman
so you can assume that he has infinity money at the beginning.

 
Input
There are multiple test cases. The first line of input contains a positive integer T (T≤250), indicating the number of test cases. For each test case:
The first line has an integer n. (1≤n≤105)
The second line has n integers a1,a2,…,an where ai means the trading price (buy or sell) of the Power Cube in the i-th city. (1≤ai≤109)
It is guaranteed that the sum of all n is no more than 5×105.
 
Output
For
each case, print one line with two integers —— the maximum profit and
the minimum times of trading to get the maximum profit.
 
Sample Input
3
4
1 2 10 9
5
9 5 9 10 5
2
2 1
 
Sample Output
16 4
5 2
0 0

Hint

In the first case, he will buy in 1, 2 and resell in 3, 4. profit = - 1 - 2 + 10 + 9 = 16
In the second case, he will buy in 2 and resell in 4. profit = - 5 + 10 = 5
In the third case, he will do nothing and earn nothing. profit = 0

题意 : 有 n 个城市,在某一个城市可以进行 3 次操作,买一件物品,卖一件物品,或什么也不做,开始的时候有无限的钱,问最终最大的收益是多少?

思路分析 : 贪心 , 从第一个城市开始,手头有东西,能卖则卖,卖不掉就买,最后剩下的退掉,但是卖的地方写法很奇特,就是每卖出去一个,我们就压进队列中两个这个元素,第一次弹出队的时候表示反悔了,第二次弹出队的时候表示当时也是将此物品买了,并没有卖出,为什么是这样,纸上写写就知道了

代码示例 :

#include <bits/stdc++.h>
using namespace std;
#define ll long long
const ll maxn = 1e5+5;
ll n; struct node
{
ll x, id;
bool operator< (const node &v)const{
if (x == v.x) return id < v.id;
return x > v.x;
}
};
priority_queue<node>que; int main () {
ll t;
ll x; cin >> t;
while(t--){
scanf("%lld", &n);
ll ans = 0, cnt = 0;
while(!que.empty()) que.pop();
for(ll i = 1; i <= n; i++){
scanf("%lld", &x);
if (!que.empty() && que.top().x < x) {
if (que.top().id != 2) cnt++;
//printf("===== %lld\n", que.top().id);
ans += x-que.top().x;
que.push({x, 2}); que.push({x, 1});
que.pop();
}
else {
que.push({x, 0});
}
//printf("++++ %lld %lld\n", i, cnt);
}
printf("%lld %lld\n", ans, cnt*2);
}
return 0;
}

Problem Description
There are N vertices connected by N?1 edges, each edge has its own length.
The set { 1,2,3,…,N } contains a total of N! unique permutations, let’s say the i-th permutation is Pi and Pi,j is its j-th number.
For the i-th permutation, it can be a traverse sequence of the tree with N vertices, which means we can go from the Pi,1-th vertex to the Pi,2-th vertex by the shortest path, then go to the Pi,3-th vertex ( also by the shortest path ) , and so on. Finally we’ll reach the Pi,N-th vertex, let’s define the total distance of this route as D(Pi) , so please calculate the sum of D(Pi) for all N! permutations.

Input
There are 10 test cases at most.
The first line of each test case contains one integer N ( 1≤N≤105 ) .
For the next N?1 lines, each line contains three integer X, Y and L, which means there is an edge between X-th vertex and Y-th of length L ( 1≤X,Y≤N,1≤L≤109 ) .

Output
For each test case, print the answer module 109+7 in one line.

Sample Input

3
1 2 1
2 3 1
3
1 2 1
1 3 2

Sample Output

16
24

题意 : 初始状态下给你一棵树,同时给你边权上的值,此时整棵树的值为所有边权的累加,然后让你求 n! 下树的边权的累加的和。

思路分析 :加上 n! 这个限制条件,题目差不多就转换成初始状态下任意点对的距离和,很像,但不完全是

    在这个问题中可以发现的任意一个点对在 n! 中出现的次数是 2*(n-1)! 的,任意打一个表就可以看出,然后在某一个图下,我是计算的时候是枚举任意一条边的,出现的次数等于边左边的点乘以边右边的点,此时在乘以 2*(n-1)! 即可

代码示例 :

#include <bits/stdc++.h>
using namespace std;
#define ll long long
const ll maxn = 1e5+5;
const ll mod = 1e9+7; ll n;
ll pp[maxn];
void init() {
pp[0] = 1;
for(ll i = 1; i <= 100000; i++){
pp[i] = pp[i-1]*i%mod;
}
}
struct node
{
ll to, cost;
};
vector<node>ve[maxn];
ll size[maxn];
ll ans; void dfs(ll x, ll fa, ll w){
for(ll i = 0; i < ve[x].size(); i++){
ll to = ve[x][i].to;
if (to == fa) continue;
dfs(to, x, ve[x][i].cost);
size[x] += size[to];
}
size[x] += 1; ans += size[x]*(n-size[x])%mod*w%mod*2%mod*pp[n-1]%mod;
ans %= mod;
} int main () {
ll u, v, w;
init(); while(~scanf("%lld", &n)){ for(int i = 1; i <= 100000; i++) ve[i].clear(); for(ll i = 1; i < n; i++){
scanf("%lld%lld%lld", &u, &v, &w);
ve[u].push_back({v, w});
ve[v].push_back({u, w});
}
memset(size, 0, sizeof(size));
ans = 0;
dfs(1, 0, 0);
printf("%lld\n", ans);
}
return 0;
}

YJJ's Salesman
Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 1369    Accepted Submission(s): 483

Problem Description
YJJ is a salesman who has traveled through western country. YJJ is always on journey. Either is he at the destination, or on the way to destination.
One day, he is going to travel from city A to southeastern city B. Let us assume that A is (0,0) on the rectangle map and B (109,109). YJJ is so busy so he never turn back or go twice the same way, he will only move to east, south or southeast, which means, if YJJ is at (x,y) now (0≤x≤109,0≤y≤109), he will only forward to (x+1,y), (x,y+1) or (x+1,y+1).
On the rectangle map from (0,0) to (109,109), there are several villages scattering on the map. Villagers will do business deals with salesmen from northwestern, but not northern or western. In mathematical language, this means when there is a village k on (xk,yk) (1≤xk≤109,1≤yk≤109), only the one who was from (xk?1,yk?1) to (xk,yk) will be able to earn vk dollars.(YJJ may get different number of dollars from different village.)
YJJ has no time to plan the path, can you help him to find maximum of dollars YJJ can get.

Input
The first line of the input contains an integer T (1≤T≤10),which is the number of test cases.

In each case, the first line of the input contains an integer N (1≤N≤105).The following N lines, the k-th line contains 3 integers, xk,yk,vk (0≤vk≤103), which indicate that there is a village on (xk,yk) and he can get vk dollars in that village.
The positions of each village is distinct.

Output
The maximum of dollars YJJ can get.

Sample Input

1
3
1 1 1
1 2 2
3 3 1

Sample Output

3

题意 : 在一张 10^9 * 10^9 的图中有 1e5 个点,规定只能向右走,向下走,向右下走,只有当往右下走的时候进入格点才会获得此中的分数,问最终最大的得分是多少?

思路分析 : 首先离散一下,将图变成 1e5*1e5 的图,我们一列一列的去维护,对于某一列中的某个点,如果想要得分,一定是他前一列中他所在位置上方的点转移下来的,就按照这个思路写就可以了

代码示例:

#include <bits/stdc++.h>
using namespace std;
#define ll long long
const ll maxn = 1e5+5;
#define lson k<<1
#define rson k<<1|1 ll n;
ll x[maxn], y[maxn];
struct pp
{
ll u, v, w; bool operator< (const pp &q)const{
if (u == q.u) return v < q.v;
return u < q.u;
}
}arr[maxn]; struct node
{
ll l, r;
ll mm;
}t[maxn<<2]; void build(ll l, ll r, ll k){
t[k].l = l, t[k].r = r; t[k].mm = 0;
if (l == r) return;
ll mid = (l+r)>>1;
build(l, mid, lson);
build(mid+1, r, rson);
} ll query(ll l, ll r, ll k){
if (l <= t[k].l && t[k].r <= r){
return t[k].mm;
}
ll mid = (t[k].l+t[k].r)>>1;
ll res = 0;
if (l <= mid) res = max(res, query(l, r, lson));
if (r > mid) res = max(res, query(l, r, rson));
return res;
} void update(ll pos, ll val, ll k){
if (t[k].l == t[k].r) {
t[k].mm = max(t[k].mm, val);
return;
}
ll mid = (t[k].l+t[k].r)>>1;
if (pos <= mid) update(pos, val, lson);
else update(pos, val, rson);
t[k].mm = max(t[lson].mm, t[rson].mm);
} int main () {
ll T; cin >> T;
while(T--){
scanf("%lld", &n);
ll w;
for(ll i = 1; i <= n; i++){
scanf("%lld%lld%lld", &x[i], &y[i], &w);
arr[i] = {x[i], y[i], w};
}
sort(x+1, x+1+n); sort(y+1, y+1+n);
ll ss = unique(x+1, x+1+n)-x;
ll ss2 = unique(y+1, y+1+n)-y;
for(ll i = 1; i <= n; i++){
arr[i].u = lower_bound(x+1, x+ss, arr[i].u)-x;
arr[i].v = lower_bound(y+1, y+ss2, arr[i].v)-y;
}
sort(arr+1, arr+1+n);
// for(ll i = 1; i <= n; i++) {
// prllf("+++ %d %d %d\n", arr[i].u, arr[i].v, arr[i].w);
// }
build(1, n, 1);
for(ll i = 1; i <= n; i++){
ll p = i+1;
while(arr[p].u == arr[i].u) p++;
for(ll j = p-1; j >= i; j--){
ll f = query(1, arr[j].v-1, 1);
update(arr[j].v, arr[j].w+f, 1);
}
i = p-1;
}
printf("%lld\n", t[1].mm);
} return 0;
}

2018 CCPC 网络赛的更多相关文章

  1. 2018 CCPC网络赛

    2018 CCPC网络赛 Buy and Resell 题目描述:有一种物品,在\(n\)个地点的价格为\(a_i\),现在一次经过这\(n\)个地点,在每个地点可以买一个这样的物品,也可以卖出一个物 ...

  2. 2018 CCPC网络赛 几道数学题

    1002 Congruence equation 题目链接  : http://acm.hdu.edu.cn/showproblem.php?pid=6439 题解 : https://www.zyb ...

  3. 2018 CCPC网络赛 hdu6444 Neko's loop

    题目描述: Neko has a loop of size n.The loop has a happy value ai on the i−th(0≤i≤n−1) grid. Neko likes ...

  4. 2018 CCPC 网络赛 Buy and Resell

    The Power Cube is used as a stash of Exotic Power. There are n cities numbered 1,2,…,n where allowed ...

  5. 2018 CCPC网络赛 1010 hdu 6447 ( 树状数组优化dp)

    链接:http://acm.hdu.edu.cn/showproblem.php?pid=6447 思路:很容易推得dp转移公式:dp[i][j] = max(dp[i][j-1],dp[i-1][j ...

  6. 【2018 CCPC网络赛 1004】Find Integer(勾股数+费马大定理)

    Problem Description people in USSS love math very much, and there is a famous math problem . give yo ...

  7. 【2018 CCPC网络赛】1001 - 优先队列&贪心

    题目地址:http://acm.hdu.edu.cn/showproblem.php?pid=6438 获得最大的利润,将元素依次入栈,期中只要碰到比队顶元素大的,就吧队顶元素卖出去,答案加上他们期中 ...

  8. 【2018 CCPC网络赛】1009 - 树

    题目地址:http://acm.hdu.edu.cn/showproblem.php?pid=6446 题目给出的数据为一棵树,dfs扫描每条边,假设去掉某条边,则左边 x 个点,右边 n-x 个点, ...

  9. 【2018 CCPC网络赛】1003 - 费马小定理

    题目地址:http://acm.hdu.edu.cn/showproblem.php?pid=6440 这题主要是理解题意: 题意:定义一个加法和乘法,使得 (m+n)p = mp+np; 其中给定 ...

  10. 【2018 CCPC网络赛】1004 - 费马大定理&数学

    题目地址:http://acm.hdu.edu.cn/showproblem.php?pid=6441 Knowledge Point: 1. 费马大定理:当整数n >2时,关于x, y, z的 ...

随机推荐

  1. Koa2 遇到Method Not Allowed 获取不到返回值

    https://q.cnblogs.com/q/114462/          都来找我  Haisen‘s blogs 求求各位大神了,2点多了没解决睡不着啊,我按照网上用的koa2-cors,g ...

  2. Python--day43--mysql唯一索引和外键变种之多对多

    唯一索引:(unique关键字)unique 名字 (num) 外键的变种:

  3. 利用SpEL 表达式实现简单的动态分表查询

    这里的动态分表查询并不是动态构造sql语句,而是利用SpEL操作同一结构的不同张表. 也可以参考Spring Data Jpa中的章节http://docs.spring.io/spring-data ...

  4. async和await的执行顺序问题

    说明 : 要了解执行顺序,所需要的知识是了解浏览器js运行机制,以及微任务和宏任务的先后顺序.如果你明白了宏任务.微任务,请往下看: async function async1 () { consol ...

  5. tensorflow在文本处理中的使用——Doc2Vec情感分析

    代码来源于:tensorflow机器学习实战指南(曾益强 译,2017年9月)——第七章:自然语言处理 代码地址:https://github.com/nfmcclure/tensorflow-coo ...

  6. webpack+babel+react+antd技术栈的基础配置

    webpack+babel+react+antd技术栈的基础配置 前段时间使用webpack+babel+react+antd做了一套后台管理系统,刚开始被一大堆的新知识压的喘不过气来,压力挺大的.还 ...

  7. 前端js页面跳转

    window.location.Reload() //刷新当前页面self.location=document.referrer;通过Request Headers中Referer获得上个页面的地址并 ...

  8. vue-cli 3.0 eslint

    1.关闭eslint module.exports = { configureWebpack: { devtool: 'source-map' }, lintOnSave: false } 2.修改e ...

  9. nodejs的nvm与.net的dnvm使用对比

    一.vm安装命令 nodejs的nvm安装命令: curl -o- https://raw.githubusercontent.com/creationix/nvm/v0.29.0/install.s ...

  10. 【Docker】删除镜像

    删除镜像:docker rmi [OPTIONS] IMAGE [IMAGE...] 1.删除所有未被 tag 标记和未被容器使用的镜像: docker image prune 2.删除所有未被容器使 ...