description

在N行M列的棋盘上,放若干个炮可以是0个,使得没有任何一个炮可以攻击另一个炮。请问有多少种放置方法?中国象棋中炮的行走方式大家应该很清楚吧.


analysis

  • \(DP\),容易知道每行至多有两个炮,否则会互相打到

  • 设\(f[i][j][k]\)表示到放到第\(i\)行,有\(j\)列放了一个炮,\(k\)列放了两个炮的方案数

  • 该行不放炮,则直接继承上一行的答案

\[f[i][j][k]+=f[i-1][j][k]
\]

  • 一个炮放在没有炮的列上,一个炮的列数\(+1\),且有\(m-k-(j-1)\)个没有炮的列可以放

\[f[i][j][k]+=f[i-1][j-1][k]*[m-k-(j-1)]
\]

  • 一个炮放在一个炮的列上,一个炮的列数\(-1\),两个炮的列数\(+1\),且有\(j+1\)个一个炮的列可以放

\[f[i][j][k]+=f[i-1][j+1][k-1]*(j+1)
\]

  • 一个炮放在一个炮的列上,一个炮放在没有炮的列上,两个炮的列数\(+1\),且分别有\(j\)列、\(m-(k-1)-j\)列可以放

\[f[i][j][k]+=f[i-1][j][k-1]*j*[m-(k-1)-j]
\]

  • 两个炮放在没有炮的列上,一个炮的列数\(+2\),且有\(C^{2}_{m-(j-2)-k}\)种方案

\[f[i][j][k]+=f[i-1][j-2][k]*C^{2}_{m-(j-2)-k}
\]

  • 两个炮放在一个炮的列上,一个炮的列数\(-2\),两个炮的列数\(+2\),且有\(C^{2}_{j+2}\)种方案

\[f[i][j][k]+=f[i-1][j+2][k-2]*C^{2}_{j+2}
\]

  • 如此转移即可,注意判断边界

code

#pragma GCC optimize("O3")
#pragma G++ optimize("O3")
#include<stdio.h>
#include<string.h>
#include<algorithm>
#define MAXN 105
#define ha 9999973
#define ll long long
#define reg register ll
#define fo(i,a,b) for (reg i=a;i<=b;++i)
#define fd(i,a,b) for (reg i=a;i>=b;--i) using namespace std; ll f[MAXN][MAXN][MAXN];
ll c[MAXN][MAXN];
ll n,m,ans; inline ll read()
{
ll x=0,f=1;char ch=getchar();
while (ch<'0' || '9'<ch){if (ch=='-')f=-1;ch=getchar();}
while ('0'<=ch && ch<='9')x=x*10+ch-'0',ch=getchar();
return x*f;
}
inline ll C(ll n){return n*(n-1)/2;}
int main()
{
n=read(),m=read(),f[0][0][0]=1;
fo(i,1,n)
{
fo(j,0,m)
{
fo(k,0,m-j)
{
f[i][j][k]=f[i-1][j][k];//不填
if (k-1>=0)
(f[i][j][k]+=f[i-1][j+1][k-1]*(j+1)%ha)%=ha;//一颗填一个炮的列
if (j-1>=0)
(f[i][j][k]+=f[i-1][j-1][k]*(m-(j-1)-k))%=ha;//一颗填没有炮的列
if (k-1>=0)
(f[i][j][k]+=f[i-1][j][k-1]*j%ha*(m-j-(k-1)))%=ha;//一颗填一个炮的列,一颗填没有炮的列
if (j-2>=0)
(f[i][j][k]+=f[i-1][j-2][k]*C(m-(j-2)-k))%=ha;//两颗填没有炮的列
if (k-2>=0)
(f[i][j][k]+=f[i-1][j+2][k-2]*C(j+2))%=ha;//两颗填一个炮的列
}
}
}
fo(i,0,m)fo(j,0,m-i)(ans+=f[n][i][j])%=ha;
printf("%lld\n",ans);
return 0;
}

【JZOJ1667】【BZOJ1801】【luoguP2051】中国象棋的更多相关文章

  1. bzoj1801 [Ahoi2009]中国象棋

    Description 在N行M列的棋盘上,放若干个炮可以是0个,使得没有任何一个炮可以攻击另一个炮. 请问有多少种放置方法,中国像棋中炮的行走方式大家应该很清楚吧. Input 一行包含两个整数N, ...

  2. [BZOJ1801][AHOI2009]中国象棋(递推)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1801 分析: 只会50的状态压缩…… 然后搜了下题解,发现是dp 首先易得每行每列至多 ...

  3. 【BZOJ1801】【AHOI2009】中国象棋(动态规划)

    [BZOJ1801][AHOI2009]中国象棋(动态规划) 题面 题目描述 这次小可可想解决的难题和中国象棋有关,在一个N行M列的棋盘上,让你放若干个炮(可以是0个),使得没有一个炮可以攻击到另一个 ...

  4. 【BZOJ1801】[Ahoi2009]chess 中国象棋 DP

    [BZOJ1801][Ahoi2009]chess 中国象棋 Description 在N行M列的棋盘上,放若干个炮可以是0个,使得没有任何一个炮可以攻击另一个炮. 请问有多少种放置方法,中国像棋中炮 ...

  5. BZOJ1801 Ahoi2009 chess 中国象棋 【DP+组合计数】*

    BZOJ1801 Ahoi2009 chess 中国象棋 Description 在N行M列的棋盘上,放若干个炮可以是0个,使得没有任何一个炮可以攻击另一个炮. 请问有多少种放置方法,中国像棋中炮的行 ...

  6. [luogu2051][bzoj1801][AHOI2009]chess中国象棋【动态规划】

    题目描述 这次小可可想解决的难题和中国象棋有关,在一个N行M列的棋盘上,让你放若干个炮(可以是0个),使得没有一个炮可以攻击到另一个炮,请问有多少种放置方法.大家肯定很清楚,在中国象棋中炮的行走方式是 ...

  7. BZOJ1801:[AHOI2009]中国象棋——题解

    http://www.lydsy.com/JudgeOnline/problem.php?id=1801 https://www.luogu.org/problemnew/show/P2051 这次小 ...

  8. [AHOI2009]中国象棋 BZOJ1801 dp

    题目描述 这次小可可想解决的难题和中国象棋有关,在一个N行M列的棋盘上,让你放若干个炮(可以是0个),使得没有一个炮可以攻击到另一个炮,请问有多少种放置方法.大家肯定很清楚,在中国象棋中炮的行走方式是 ...

  9. BZOJ1801 [Ahoi2009]chess 中国象棋(DP, 计数)

    题目链接 [Ahoi2009]chess 中国象棋 设$f[i][j][k]$为前i行,$j$列放了1个棋子,$k$列放了2个棋子的方案数 分6种情况讨论,依次状态转移. #include <b ...

随机推荐

  1. (数据科学学习手札59)从抓取数据到生成shp文件并展示

    一.简介 shp格式的文件是地理信息领域最常见的文件格式之一,很好的结合了矢量数据与对应的标量数据,而在Python中我们可以使用pyshp来完成创建shp文件的过程,本文将从如何从高德地图获取矢量信 ...

  2. to meet you 常用类库与技巧

    1.Java的异常体系 2.从概念角度解析Java的异常处理机制 3.从责任角度看Java的异常体系 checked exception 必须try catch 或者继续向上抛出异常,否则编译不能通过 ...

  3. JOOQ 入门--简介

    序言 新接触的项目中存在的大量的原生JDBC的代码,满屏幕都是PrepareStatement 和ResultSet, 以及各种关闭资源的语句. 所以有了用开源框架去重写的想法,然后就找到了JOOQ. ...

  4. spring开发案例配合mysql

    实体类: package cn.mepu.domain; import java.io.Serializable; /** * 账户实体类 * @author shkstart * @create 2 ...

  5. keras 或 tensorflow 调用GPU报错:Blas GEMM launch failed

    GPU版的tensorflow在模型训练时遇到Blas GEMM launch failed错误,或者keras遇到相同错误(keras 一般将tensorflow作为backend,如果安装了GPU ...

  6. linux 7下已有mysql之后,如何使用

    今天在使用阿里云平台的esc时,选择的centos7系统,在安装mariadb的时候,发现系统已经自带了,然后却无法使用,在调查了之后,发现启动service的依赖件没有安装,所以安装以下依赖件. m ...

  7. codeforces750E New Year and Old Subsequence 矩阵dp + 线段树

    题目传送门 思路: 先看一个大牛的题解 题解里面对矩阵的构造已经写的很清楚了,其实就是因为在每个字符串都有固定的很多中状态,刚好可以用矩阵来表达,所以$(i,j)$这种状态可以通过两个相邻的矩阵的$m ...

  8. Linux常用命令大全(很全面)

    最近都在和Linux打交道,感觉还不错.我觉得Linux相比windows比较麻烦的就是很多东西都要用命令来控制,当然,这也是很多人喜欢linux的原因,比较短小但却功能强大.我将我了解到的命令列举一 ...

  9. mysql和postgresql查询数据库中哪些表包含某个字段

    想知道数据库中哪表含有edu_status字段   mysql> select table_name,column_name from information_schema.columns wh ...

  10. centos7 dns(bind)安装配置

    yum install -y bind bind-chroot bind-utils chroot是通过相关文件封装在一个伪根目录内,已达到安全防护的目的,一旦程序被攻破,将只能访问伪根目录内的内容, ...