传送门

•题意

求$2^{2^{2^{2^{2^{2^{...^{2}}}}}}}$ (无穷个2) 对p取模的值

•思路

设答案为f(p)

$2^{2^{2^{2^{2^{2^{...^{2}}}}}}}\%p$

$=2^{(2^{2^{2^{2^{2^{...^{2}}}}}}\%\varphi(p)+ \varphi(p))}\%p$

$=2^{(2^{2^{2^{2^{2^{...^{2}}}}}}\%\varphi(p)+ \varphi(p))}\%p$

$=2^{(2^{(2^{2^{2^{2^{...^{2}}}}}\%\varphi(\varphi(p)+\varphi(\varphi(p))))}\%\varphi(p)+ \varphi(p))}\%p$

...

得到递推式     $2^{f(\varphi(p))+\varphi(p)}(mod\ p)$

利用欧拉降幂

$a^{b}=\begin{cases}a^{b\%\varphi(p)}  \ \ \ \ \ \ \ \ \ \  gcd(a,p)=1 \\ a^{b} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \   gcd(a,p)\neq 1,b \leqslant \varphi(p)\\a^{b\%\varphi(p)+\varphi(p)}  \ \ gcd(a,p)\neq1,b\geqslant \varphi(p)  \\ \end{cases}$

由于2的幂数是无穷的,肯定$>p$,所以可以直接使用$a^{b\%\varphi(p)+\varphi(p)} $

•代码

 #include<bits/stdc++.h>
using namespace std;
#define ll long long
ll qpow(ll a,ll b,ll mod)
{
ll res=;
while(b)
{
if(b&)
res=res*a%mod;
a=a*a%mod;
b>>=;
}
return res;
} ll phi(ll x)
{
ll res=x;
for(int i=;i*i<=x;i++)
{
if(x%i==)
{
while(x%i==)
x/=i;
res=res-res/i;
}
}
if(x>)
res=res-res/x;
return res;
} ll solve(ll m)
{
if(m==)
return ; ll p=phi(m);
return qpow(,solve(p)+p,m);
} int main()
{
int t;
cin>>t;
while(t--)
{
ll m;
cin>>m;
cout<<solve(m)<<endl;
}
}

洛谷4139 bzoj 3884 上帝与集合的正确用法的更多相关文章

  1. bzoj 3884 上帝与集合的正确用法 指数循环节

    3884: 上帝与集合的正确用法 Time Limit: 5 Sec  Memory Limit: 128 MB[Submit][Status][Discuss] Description   根据一些 ...

  2. BZOJ 3884 上帝与集合的正确用法

    Description 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做"元". 第二天, 上帝创造了一个新的元素,称作&quo ...

  3. 【数学】[BZOJ 3884] 上帝与集合的正确用法

    Description 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做“元”. 第二天, 上帝创造了一个新的元素,称作“α”.“α”被定义为“元” ...

  4. BZOJ 3884 上帝与集合的正确用法(扩展欧拉定理)

    Description   根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做“元”. 第二天, 上帝创造了一个新的元素,称作“α”.“α”被定义为“ ...

  5. bzoj 3884 上帝与集合的正确用法(递归,欧拉函数)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=3884 [题意] 求2^2^2… mod p [思路] 设p=2^k * q+(1/0) ...

  6. BZOJ 3884: 上帝与集合的正确用法 [欧拉降幂]

    PoPoQQQ大爷太神了 只要用欧拉定理递归下去就好了.... 然而还是有些细节没考虑好: $(P,2) \neq 1$时分解$P=2^k*q$的形式,然后变成$2^k(2^{(2^{2^{...}} ...

  7. BZOJ.3884.上帝与集合的正确用法(扩展欧拉定理)

    \(Description\) 给定p, \(Solution\) 欧拉定理:\(若(a,p)=1\),则\(a^b\equiv a^{b\%\varphi(p)}(mod\ p)\). 扩展欧拉定理 ...

  8. 解题:BZOJ 3884 上帝与集合的正确用法

    题面 好久以前写的,发现自己居然一直没有写题解=.= 扩展欧拉定理:在$b>φ(p)$时有$a^b \equiv a^{b\%φ(p)+φ(p)}(mod$ $p)$ 然后每次递归那个$a^{b ...

  9. BZOJ 3884: 上帝与集合的正确用法 扩展欧拉定理 + 快速幂

    Code: #include<bits/stdc++.h> #define maxn 10000004 #define ll long long using namespace std; ...

随机推荐

  1. Android书架实现

    转自http://blog.csdn.net/wangkuifeng0118/article/details/7944215 书架效果: 下面先看一下书架的实现原理吧! 首先看一下layout下的布局 ...

  2. node服务器的配置

    安装node 安装pm2 http://blog.csdn.net/chenlinIT/article/details/73343793 安装mongodbhttp://zixuephp.net/ar ...

  3. Oracle中事物处理--事物隔离级别

    n  事物隔离级别 概念:隔离级别定义了事物与事物之间的隔离程度. ANSI/ISO SQL92标准定义了一些数据库操作的隔离级别(这是国际标准化组织定义的一个标准而已,不同的数据库在实现时有所不同) ...

  4. Leetcode771.Jewels and Stones宝石与石头

    给定字符串J 代表石头中宝石的类型,和字符串 S代表你拥有的石头. S 中每个字符代表了一种你拥有的石头的类型,你想知道你拥有的石头中有多少是宝石. J 中的字母不重复,J 和 S中的所有字符都是字母 ...

  5. markdown-it + highlight.js简易实现

    markdown-it 官方demo markdown-it 文档 1.配置highlightjs,针对markdown中各种语言高亮,针对对应的标签 pre code 里面的样式 -- index. ...

  6. @游记@ CSP2019

    目录 @day -??@ @day -1@ @day 0@ @day 1@ @day 2@ @day ??@ @day ??+1@ @day -??@ 和 yhn 学长在校外偶遇. 聊了一些.他说现在 ...

  7. 2019-10-7-WPF-如何跨线程重新抛出异常

    title author date CreateTime categories WPF 如何跨线程重新抛出异常 lindexi 2019-10-07 13:24:54 +0800 2019-10-4 ...

  8. Redis源码解析:06整数集合

    整数集合(intset)是集合键的底层实现之一,当一个集合只包含整数值元素,并且这个集合的元素数量不多时,Redis就会使用整数集合作为集合键的底层实现. intset可以保存类型为int16_t,i ...

  9. python基础之逻辑题(1)

    python基础之逻辑题(1) 1.用一行代码实现数值交换? 2.求结果--fromkeys? 3.1,2,3,4,5能组成多少个互不相同且无重复的三位数? 4.有两个字符串列表a和b,每个字符串是逗 ...

  10. day5_python之环境变量设置

    1.设置环境变量 import os,sys print(os.path.abspath(__file__)) #当前py文件的绝对路径 print(os.path.dirname(os.path.a ...