这是RTC算法的文献blog

Real-time Compressive Tracking

Kaihua Zhang1Lei Zhang1Ming-Hsuan Yang2

1Dept. of Computing, The Hong Kong Polytechnic University, Hong Kong

2Electrical Engineering and Computer Science, University of California at Merced, United States

(a) Updating classifier at the t-th frame

(b) Tracking at  the (t+1)-th frame


ABSTRACT

  It is a challenging task to develop effective and efficient appearance models for robust object tracking due to factors such as pose variation, illumination change, occlusion, and motion blur. Existing online tracking algorithms often update models with samples from observations in recent frames. While much success has been demonstrated, several issues remain to be addressed. First, while these adaptive appearance models are data-dependent, there does not exist sufficient amount of data for online algorithms to learn at the outset. Second, online tracking algorithms often encounter the drift problems. As a result of self-taught learning, these misaligned samples are likely to be added and degrade the appearance models. In this paper, we propose a simple yet effective and efficient tracking algorithm with an appearance model based on features extracted from the multi-scale image feature space with data-independent basis. Our appearance model employs non-adaptive random projections that preserve the structure of the image feature space of objects. A very sparse measurement matrix is adopted to efficiently extract the features for the appearance model. We compress samples of foreground targets and the background using the same sparse measurement matrix. The tracking task is formulated as a binary classification via a naive Bayes classifier with online update in the compressed domain. The proposed compressive tracking algorithm runs in real-time and performs favorably against state-of-the-art algorithms on challenging sequences in terms of efficiency, accuracy and robustness.

原文地址:http://www4.comp.polyu.edu.hk/~cslzhang/CT/CT.htm

Real-time Compressive Tracking的更多相关文章

  1. 高速压缩跟踪(fast compressive tracking)(CT)算法分析

    本文为原创,转载请注明出处:http://blog.csdn.net/autocyz/article/details/44490009 Fast Compressive Tracking (高速压缩跟 ...

  2. 压缩跟踪Compressive Tracking

    好了,学习了解了稀疏感知的理论知识后,终于可以来学习<Real-Time Compressive Tracking>这个paper介绍的感知跟踪算法了.自己英文水平有限,理解难免出错,还望 ...

  3. Real-Time Compressive Tracking,实时压缩感知跟踪算法解读

    这是Kaihua Zhang发表在ECCV2012的paper,文中提出了一种基于压缩感知(compressive sensing)的单目标跟踪算法,该算法利用满足压缩感知(compressive s ...

  4. Real-Time Compressive Tracking 论文笔记

    总体思想 1 利用符合压缩感知RIP条件的随机感知矩阵对多尺度图像进行降维 2 然后对降维的特征採用简单的朴素贝叶斯进行分类 算法主要流程 1 在t帧的时候,我们採样得到若干张目标(正样本)和背景(负 ...

  5. Improved dual-mode compressive tracking integrating balanced colour and texture features

    <改进的集成平衡颜色和纹理特征的双模压缩跟踪> 摘要:将跟踪问题视为分析目标和背景信息的分类问题的判别跟踪方法可以实现最先进的性能.作为一个高性能判别器,压缩跟踪近来受到很多关注.然而,当 ...

  6. 压缩跟踪Compressive Tracking(转)

    这位博主总结的实在太好了,从原理到论文到代码,连论文都不用看:论文:http://blog.csdn.net/zouxy09/article/details/8118360 代码部分:http://b ...

  7. Adaptive Compressive Tracking via Online Vector Boosting Feature Selection(ACT算法解读)

  8. Correlation Filter in Visual Tracking系列二:Fast Visual Tracking via Dense Spatio-Temporal Context Learning 论文笔记

    原文再续,书接一上回.话说上一次我们讲到了Correlation Filter类 tracker的老祖宗MOSSE,那么接下来就让我们看看如何对其进一步地优化改良.这次要谈的论文是我们国内Zhang ...

  9. Survey of single-target visual tracking methods based on online learning 翻译

    基于在线学习的单目标跟踪算法调研 摘要 视觉跟踪在计算机视觉和机器人学领域是一个流行和有挑战的话题.由于多种场景下出现的目标外貌和复杂环境变量的改变,先进的跟踪框架就有必要采用在线学习的原理.本论文简 ...

随机推荐

  1. linux中的链接命令

    ln 解释 命令名称:ln 命令英文原意:link 命令所在路径:/bin/ln 执行权限:所有用户 功能描述:生成链接文件 语法 ln -s [源文件] [目标文件] -s 创建软链接 示例 # 创 ...

  2. Java Lamada

    Collection: ->stream:返回一个以 colleciotn 元素为数据源的数据流. -->map: 入参 Function 对象,将此流中的元素依次作用于传入的 Funct ...

  3. Git安装与配置,以及pycharm提交代码到github

    1.下载git,安装 下载好后直接下一步到底,安装成功(选择组件页面,可以勾选上控制台窗口字体选项,如下图) 2.配置Git信息 1.打开窗口中,输入:git --version 查看已安装的git版 ...

  4. Hadoop架构及集群

    Hadoop是一个由Apache基金会所开发的分布式基础架构,Hadoop的框架最核心的设计就是:HDFS和MapReduce.HDFS为海量的数据提供了存储,而MapReduce则为海量的数据提供了 ...

  5. pgspider gzip fdw试用(集成gzip+http+graphql-engine)

    gzip 也是一个在实际中比较有用的处理工具,可以减少数据传输,以下是集成gzip http 以及plv8 的处理 gzip Docker 镜像 Dockerfile FROM dalongrong/ ...

  6. 【一起刷LeetCode】整数反转

    前言&絮叨 别人都忙着参加年会晒奖品,我却忙着写代码.每逢年底都要安排几个紧急项目,我什么时候能摆脱这种宿命. 在忙也不能忘记刷LeetCode,毛毛向前冲!!! 题目描述 给出一个 32 位 ...

  7. Django如何连接mysql

    1.设置django的mysql驱动为pymysql 因为django默认的是使用MySqlDb连接mysql数据库,但是由于该模块不支持python3.4以上版本,所以使用pymysql模块 在项目 ...

  8. Angular2的环境构筑

    1.nodejs安装   https://nodejs.org/en/download/   2.环境变量设定   Path->\node-v10.16.3-win-x64   3.在cmd下输 ...

  9. Ubuntu 搭建phpcms

    安装Apache2 $ sudo apt-get update -y $ sudo apt-get install apache2 -y $ sudo systemctl start apache2. ...

  10. MacBook Pro安装VMware Fusion 11

    下载地址 https://www.vmware.com/cn/products/fusion/fusion-evaluation.html 序列号 TX1NF-PPVRW-A1XAX-X5PVZ-Q7 ...