Real-time Compressive Tracking
这是RTC算法的文献blog
Real-time Compressive Tracking
Kaihua Zhang1, Lei Zhang1, Ming-Hsuan Yang2
1Dept. of Computing, The Hong Kong Polytechnic University, Hong Kong
2Electrical Engineering and Computer Science, University of California at Merced, United States

(a) Updating classifier at the t-th frame

(b) Tracking at the (t+1)-th frame
ABSTRACT
It is a challenging task to develop effective and efficient appearance models for robust object tracking due to factors such as pose variation, illumination change, occlusion, and motion blur. Existing online tracking algorithms often update models with samples from observations in recent frames. While much success has been demonstrated, several issues remain to be addressed. First, while these adaptive appearance models are data-dependent, there does not exist sufficient amount of data for online algorithms to learn at the outset. Second, online tracking algorithms often encounter the drift problems. As a result of self-taught learning, these misaligned samples are likely to be added and degrade the appearance models. In this paper, we propose a simple yet effective and efficient tracking algorithm with an appearance model based on features extracted from the multi-scale image feature space with data-independent basis. Our appearance model employs non-adaptive random projections that preserve the structure of the image feature space of objects. A very sparse measurement matrix is adopted to efficiently extract the features for the appearance model. We compress samples of foreground targets and the background using the same sparse measurement matrix. The tracking task is formulated as a binary classification via a naive Bayes classifier with online update in the compressed domain. The proposed compressive tracking algorithm runs in real-time and performs favorably against state-of-the-art algorithms on challenging sequences in terms of efficiency, accuracy and robustness.
原文地址:http://www4.comp.polyu.edu.hk/~cslzhang/CT/CT.htm
Real-time Compressive Tracking的更多相关文章
- 高速压缩跟踪(fast compressive tracking)(CT)算法分析
本文为原创,转载请注明出处:http://blog.csdn.net/autocyz/article/details/44490009 Fast Compressive Tracking (高速压缩跟 ...
- 压缩跟踪Compressive Tracking
好了,学习了解了稀疏感知的理论知识后,终于可以来学习<Real-Time Compressive Tracking>这个paper介绍的感知跟踪算法了.自己英文水平有限,理解难免出错,还望 ...
- Real-Time Compressive Tracking,实时压缩感知跟踪算法解读
这是Kaihua Zhang发表在ECCV2012的paper,文中提出了一种基于压缩感知(compressive sensing)的单目标跟踪算法,该算法利用满足压缩感知(compressive s ...
- Real-Time Compressive Tracking 论文笔记
总体思想 1 利用符合压缩感知RIP条件的随机感知矩阵对多尺度图像进行降维 2 然后对降维的特征採用简单的朴素贝叶斯进行分类 算法主要流程 1 在t帧的时候,我们採样得到若干张目标(正样本)和背景(负 ...
- Improved dual-mode compressive tracking integrating balanced colour and texture features
<改进的集成平衡颜色和纹理特征的双模压缩跟踪> 摘要:将跟踪问题视为分析目标和背景信息的分类问题的判别跟踪方法可以实现最先进的性能.作为一个高性能判别器,压缩跟踪近来受到很多关注.然而,当 ...
- 压缩跟踪Compressive Tracking(转)
这位博主总结的实在太好了,从原理到论文到代码,连论文都不用看:论文:http://blog.csdn.net/zouxy09/article/details/8118360 代码部分:http://b ...
- Adaptive Compressive Tracking via Online Vector Boosting Feature Selection(ACT算法解读)
- Correlation Filter in Visual Tracking系列二:Fast Visual Tracking via Dense Spatio-Temporal Context Learning 论文笔记
原文再续,书接一上回.话说上一次我们讲到了Correlation Filter类 tracker的老祖宗MOSSE,那么接下来就让我们看看如何对其进一步地优化改良.这次要谈的论文是我们国内Zhang ...
- Survey of single-target visual tracking methods based on online learning 翻译
基于在线学习的单目标跟踪算法调研 摘要 视觉跟踪在计算机视觉和机器人学领域是一个流行和有挑战的话题.由于多种场景下出现的目标外貌和复杂环境变量的改变,先进的跟踪框架就有必要采用在线学习的原理.本论文简 ...
随机推荐
- 架构师成长系列 | 从 2019 到 2020,Apache Dubbo 年度回顾与总结
作者 | 刘军(陆龟)Apache Dubbo PMC 本文整理自架构师成长系列 2 月 18 日直播课程. 关注"阿里巴巴云原生"公众号,回复 "218",即 ...
- Java基础之二、类的知识
类定义---方法及其处理的数据对象的集合结构 将现实的对象(物体)和概念映射到程序中的对象(变量)中 1:使用new运算符创建的类类型的主体称为实例,创建实例的操作称为实例化, new Account ...
- 全面了解Java中的15种锁概念及机制!
在读很多并发文章中,会提及各种各样锁如公平锁,乐观锁等等,这篇文章介绍各种锁的分类.介绍的内容如下: 1.公平锁 / 非公平锁 2.可重入锁 / 不可重入锁 3.独享锁 / 共享锁 4.互斥锁 / 读 ...
- FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecate;的解决办法
踩坑场景 报错FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecate; 解决办法 1.升级numpy ...
- #AcWing系列课程Level-2笔记——3. 整数二分算法
整数二分算法 编写整数二分,记住下面的思路,代码也就游刃有余了! 1.首先找到数组的中间值,mid=(left+right)>>1,区间[left, right]被划分成[left, mi ...
- Failed to resolve: com.android.support:appcompat-v7:29.+ 版本不一致错误
这个问题,困扰了我一天,终于解决, 问题的根本就是 Android studio 的 SDK Build-Tools 与工程所需的不一致.具体讲解如下: 具体解决方案: 1.既然是版本问题,那就的先去 ...
- linux版本的jdk1.8+hadoop2.9.2下载地址
hadoop: 链接:https://pan.baidu.com/s/14AhhPYP8933tn-EfSX-i8Q 提取码:e90m jdk1.8: 链接:https://pan.baidu.com ...
- Centos 7 下安装 samba 服务
yum install samba 配置文件在:/etc/samba/smb.conf [global] #添加下面这句 map to guest = Bad User #这个选项是保证匿名访问! # ...
- 移动Web开发-WebApp(flex布局+移动端导航案例)
实际开发中的像素:css像素设备像素比dpr=设备像素/css像素标清屏dpr=1 高清屏dpr=2缩放改变的是css像素大小PPI(每英寸的物理像素点)=根号(屏幕横向分辨率²+屏幕纵向分辨率²)/ ...
- java文件分割及合并
分割设置好分割数量,根据源文件大小来把数据散到子文件中代码如下; package word; import java.io.File; import java.io.FileInputStream; ...