Real-time Compressive Tracking
这是RTC算法的文献blog
Real-time Compressive Tracking
Kaihua Zhang1, Lei Zhang1, Ming-Hsuan Yang2
1Dept. of Computing, The Hong Kong Polytechnic University, Hong Kong
2Electrical Engineering and Computer Science, University of California at Merced, United States

(a) Updating classifier at the t-th frame

(b) Tracking at the (t+1)-th frame
ABSTRACT
It is a challenging task to develop effective and efficient appearance models for robust object tracking due to factors such as pose variation, illumination change, occlusion, and motion blur. Existing online tracking algorithms often update models with samples from observations in recent frames. While much success has been demonstrated, several issues remain to be addressed. First, while these adaptive appearance models are data-dependent, there does not exist sufficient amount of data for online algorithms to learn at the outset. Second, online tracking algorithms often encounter the drift problems. As a result of self-taught learning, these misaligned samples are likely to be added and degrade the appearance models. In this paper, we propose a simple yet effective and efficient tracking algorithm with an appearance model based on features extracted from the multi-scale image feature space with data-independent basis. Our appearance model employs non-adaptive random projections that preserve the structure of the image feature space of objects. A very sparse measurement matrix is adopted to efficiently extract the features for the appearance model. We compress samples of foreground targets and the background using the same sparse measurement matrix. The tracking task is formulated as a binary classification via a naive Bayes classifier with online update in the compressed domain. The proposed compressive tracking algorithm runs in real-time and performs favorably against state-of-the-art algorithms on challenging sequences in terms of efficiency, accuracy and robustness.
原文地址:http://www4.comp.polyu.edu.hk/~cslzhang/CT/CT.htm
Real-time Compressive Tracking的更多相关文章
- 高速压缩跟踪(fast compressive tracking)(CT)算法分析
本文为原创,转载请注明出处:http://blog.csdn.net/autocyz/article/details/44490009 Fast Compressive Tracking (高速压缩跟 ...
- 压缩跟踪Compressive Tracking
好了,学习了解了稀疏感知的理论知识后,终于可以来学习<Real-Time Compressive Tracking>这个paper介绍的感知跟踪算法了.自己英文水平有限,理解难免出错,还望 ...
- Real-Time Compressive Tracking,实时压缩感知跟踪算法解读
这是Kaihua Zhang发表在ECCV2012的paper,文中提出了一种基于压缩感知(compressive sensing)的单目标跟踪算法,该算法利用满足压缩感知(compressive s ...
- Real-Time Compressive Tracking 论文笔记
总体思想 1 利用符合压缩感知RIP条件的随机感知矩阵对多尺度图像进行降维 2 然后对降维的特征採用简单的朴素贝叶斯进行分类 算法主要流程 1 在t帧的时候,我们採样得到若干张目标(正样本)和背景(负 ...
- Improved dual-mode compressive tracking integrating balanced colour and texture features
<改进的集成平衡颜色和纹理特征的双模压缩跟踪> 摘要:将跟踪问题视为分析目标和背景信息的分类问题的判别跟踪方法可以实现最先进的性能.作为一个高性能判别器,压缩跟踪近来受到很多关注.然而,当 ...
- 压缩跟踪Compressive Tracking(转)
这位博主总结的实在太好了,从原理到论文到代码,连论文都不用看:论文:http://blog.csdn.net/zouxy09/article/details/8118360 代码部分:http://b ...
- Adaptive Compressive Tracking via Online Vector Boosting Feature Selection(ACT算法解读)
- Correlation Filter in Visual Tracking系列二:Fast Visual Tracking via Dense Spatio-Temporal Context Learning 论文笔记
原文再续,书接一上回.话说上一次我们讲到了Correlation Filter类 tracker的老祖宗MOSSE,那么接下来就让我们看看如何对其进一步地优化改良.这次要谈的论文是我们国内Zhang ...
- Survey of single-target visual tracking methods based on online learning 翻译
基于在线学习的单目标跟踪算法调研 摘要 视觉跟踪在计算机视觉和机器人学领域是一个流行和有挑战的话题.由于多种场景下出现的目标外貌和复杂环境变量的改变,先进的跟踪框架就有必要采用在线学习的原理.本论文简 ...
随机推荐
- 实训第八天 有关python orm 的学习记录 常用方法01
沿用第七天的数据库,数据库现在是这样的: 配置好主路由include子路由 子路由引入views 在views页面定义test测试请求如下: def test(request): # 1.all()方 ...
- C#设计模式学习笔记:(15)迭代器模式
本笔记摘抄自:https://www.cnblogs.com/PatrickLiu/p/7903617.html,记录一下学习过程以备后续查用. 一.引言 今天我们要讲行为型设计模式的第三个模式--迭 ...
- 方法中this指向的问题
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- HTML连载68-形变中心点、形变中心轴
一. 形变中心点介绍 <style> ul li { width: 100px; height: 100px; list-style: none; float:left; margin:0 ...
- yum的repo的配置文件说明
[base]:容器名称,一定要放在[]中.name:容器说明,可以自己随便写.mirrorlist:镜像站点,这个可以注释掉.baseurl:我们的 yum 源服务器的地址.默认是 CentOS 官方 ...
- kubernetes监控
总体设计思想 总体设计架构图Kubernetes monitoring architecture 设计介绍 监控分成两个部分 核心指标流程 包括的组件有 kubelet.resource estima ...
- RMAN中MAXSETSIZE和MAXPIECESIZE的用法
MAXSETSIZE跟MAXPIECESIZE用法 区别:maxpiecesize设置的是备份完成后的备份片大小,对备份整体的大小没有影响,比如一个G的备份完成文件,maxpiecesize设置为10 ...
- 【Java】Swing实现一个简单的计算器
import javax.swing.*; import java.awt.*; /** * 计算器 * @author paul * 2019.11.25 21:43 * */ public cla ...
- 教你如何理解JAVA的I/O类库
花括号MC(huakuohao-mc):关注JAVA基础编程及大数据,注重经验分享及个人成长. Java 的 I/O 流,说简单也简单,说复杂也复杂.复杂是因为进行一次常规的文件 I/O 操作通常要用 ...
- Golang模块之HTTP
HTTP客户端和服务端 Go语言中内置net/http包提供了HTTP客户端和服务端的实现 HTTP服务端 package main import ( "encoding/json" ...