【笔记】机器学习 - 李宏毅 - 8 - Backpropagation
反向传播
反向传播主要用到是链式法则。
概念:
损失函数Loss Function是定义在单个训练样本上的,也就是一个样本的误差。
代价函数Cost Function是定义在整个训练集上的,也就是所有样本误差的总和的平均。有没有这个平均不会影响最后的参数求解结果。
总体损失函数Total Loss Function是定义在整个训练集上的,所有误差的总和,反向传播需要最小化的值。

取一个神经元分析:

计算梯度分为两部分:
forward pass、backward pass
Forward Pass
求出的偏微分的值就是输入x的值,很好计算。

Backward Pass
激活函数是\(sigmoid\)的话,导数如图

用链式法则计算
其中\({\sigma}'(z)\)是常数,因为\(z\)在向前传播的时候就已经确定了

一直迭代计算到最后的输出层结束,然后结果逐层返回。

前向和后向:

【笔记】机器学习 - 李宏毅 - 8 - Backpropagation的更多相关文章
- 深度学习课程笔记(三)Backpropagation 反向传播算法
深度学习课程笔记(三)Backpropagation 反向传播算法 2017.10.06 材料来自:http://speech.ee.ntu.edu.tw/~tlkagk/courses_MLDS1 ...
- 机器学习笔记P1(李宏毅2019)
该博客将介绍机器学习课程by李宏毅的前两个章节:概述和回归. 视屏链接1-Introduction 视屏链接2-Regression 该课程将要介绍的内容如下所示: 从最左上角开始看: Regress ...
- 【笔记】机器学习 - 李宏毅 - 10 - Tips for Training DNN
神经网络的表现 在Training Set上表现不好 ----> 可能陷入局部最优 在Testing Set上表现不好 -----> Overfitting 过拟合 虽然在机器学习中,很容 ...
- 【笔记】机器学习 - 李宏毅 - 5 - Classification
Classification: Probabilistic Generative Model 分类:概率生成模型 如果说对于分类问题用回归的方法硬解,也就是说,将其连续化.比如 \(Class 1\) ...
- 【笔记】机器学习 - 李宏毅 - 1 - Introduction & next step
Machine Learning == Looking for a Function AI过程的解释:用户输入信息,计算机经过处理,输出反馈信息(输入输出信息的形式可以是文字.语音.图像等). 因为从 ...
- 【笔记】机器学习 - 李宏毅 - 13 - Why Deep
当参数一样多的时候,神经网络变得更高比变宽更有效果.为什么会这样呢? 其实和软件行业的模块化思想是一致的. 比如,如果直接对这四种分类进行训练,长发的男孩数据较少,那么这一类训练得到的classifi ...
- 【笔记】机器学习 - 李宏毅 - 12 - CNN
Convolutional Neural Network CNN 卷积神经网络 1. 为什么要用CNN? CNN一般都是用来做图像识别的,当然其他的神经网络也可以做,也就是输入一张图的像素数组(pix ...
- 【笔记】机器学习 - 李宏毅 - 11 - Keras Demo2 & Fizz Buzz
1. Keras Demo2 前节的Keras Demo代码: import numpy as np from keras.models import Sequential from keras.la ...
- 【笔记】机器学习 - 李宏毅 - 9 - Keras Demo
3.1 configuration 3.2 寻找最优网络参数 代码示例: # 1.Step 1 model = Sequential() model.add(Dense(input_dim=28*28 ...
随机推荐
- 严重 [RMI TCP Connection(3)-127.0.0.1]
学习Servlet时碰到的一个bug. Connected to server [2017-01-08 04:40:33,100] Artifact jspRun:war exploded: Arti ...
- VC简单操作mysql
#include <iostream> #include <winsock.h> #include <mysql.h> #pragma comment(lib, & ...
- 视觉slam十四讲课后习题ch3-7
题目回顾: 设有小萝卜一号和小萝卜二号位于世界坐标系中,小萝卜一号的位姿为:q1=[0.35,0.2,0.3,0.1],t2=[0.3,0.1,0.1]^T (q的第一项为实部.请你把q归一化后在进行 ...
- webdriver高级应用 -无人干预地自动上传文件
本节主要介绍通过程序代码无人干预地上传文件附件,并进行提交操作. 1.使用send_keys方法上传文件 #!/usr/bin/env python # -*- coding: utf-8 -*- # ...
- HDU 6562 lovers 2018CCPC吉林H(线段树)
题意: 初始n个空串,m个操作: 1.给[l,r]的所有字符串头尾加一个‘d’,将原字符串x变为dxd 2.求[l,r]所有字符串代表的数字之和mod 1e9+7 思路: 据说是硬核线段树.. 对于线 ...
- Go语言实现:【剑指offer】和为S的连续正数序列
该题目来源于牛客网<剑指offer>专题. 小明很喜欢数学,有一天他在做数学作业时,要求计算出9~16的和,他马上就写出了正确答案是100.但是他并不满足于此,他在想究竟有多少种连续的正数 ...
- 移植freertos到stm32 f103 的基本流程和总结
为什么要在stm32 f103上面移植freertos stm32 f103 以他的全面的文档,亲民的价格,强大的功能.成为无数微设备的方案首选.在市场上有极大的使用量.市场占有率也是非常的高.f ...
- 一. 数据分片和路由 <<大数据日知录>> 读书笔记
本章主要讲解大数据下如何做数据分片,所谓分片,即将大量数据分散在不同的节点,同时每个存储节点还要做副本备份. 而一般的抽象分片方法是, 先将数据映射到一个分片空间,这是多对一的关系,即一个数据分片区间 ...
- 01-Maven
今日知识 1. Maven 2. 依赖管理 2. 项目构建 Maven 1. Maven是基于项目对象模型(POM),可以通过一小段描述信息来管理项目的构建,报告和文档的软件项目管理工具. 2. Ma ...
- 数据算法 --hadoop/spark数据处理技巧 --(9.基于内容的电影推荐 10. 使用马尔科夫模型的智能邮件营销)
九.基于内容的电影推荐 在基于内容的推荐系统中,我们得到的关于内容的信息越多,算法就会越复杂(设计的变量更多),不过推荐也会更准确,更合理. 本次基于评分,提供一个3阶段的MR解决方案来实现电影推荐. ...