[SDOI2011]染色(luogu)

Description

给定一棵有n个节点的无根树和m个操作,操作有2类:
1、将节点a到节点b路径上所有点都染成颜色c;
2、询问节点a到节点b路径上的颜色段数量(连续相同颜色被认为是同一段),
如“112221”由3段组成:“11”、“222”和“1”。
请你写一个程序依次完成这m个操作。
input
第一行包含2个整数n和m,分别表示节点数和操作数;
第二行包含n个正整数表示n个节点的初始颜色
下面 行每行包含两个整数x和y,表示x和y之间有一条无向边。
下面 行每行描述一个操作:
“C a b c”表示这是一个染色操作,把节点a到节点b路径上所有点(包括a和b)都染成颜色c;
“Q a b”表示这是一个询问操作,询问节点a到节点b(包括a和b)路径上的颜色段数量。
ouput
对于每个询问操作,输出一行答案。
Solution
树链剖分处理色块(注意相邻两段的首尾颜色相同的情况)
主要是细节,详见代码
Code

#include <cstdio>
#include <cstdlib>
#include <vector>
using namespace std;
const int N=1e5+;
struct node
{
int l,r,lc,rc,cl,cr,sum;
bool flag;
}f[N*];
int fa[N],deep[N],son[N],d[N],dfn[N],si[N],top[N],rt,
tot,cnt,n,m,u,v,c,re[N],L,R,a,b;
char s[];
vector <int> link[N];
void dfs1(int u,int f)
{
fa[u]=f;
deep[u]=deep[f]+;
si[u]=;
int size=link[u].size();
for(int i=;i<size;i++)
{
int v=link[u][i];
if(v!=f)
{
dfs1(v,u);
si[u]+=si[v];
if(son[u]== || si[son[u]]<si[v]) son[u]=v;
}
}
}
void dfs2(int u,int f)
{
dfn[u]=++cnt,re[cnt]=u;
if(son[u]!=) top[son[u]]=top[u],dfs2(son[u],u);
int size=link[u].size();
for(int i=;i<size;i++)
{
int v=link[u][i];
if(v!=f && v!=son[u])
top[v]=v,dfs2(v,u);
}
}
void push_up(int g)
{
int lc=f[g].lc,rc=f[g].rc;
f[g].cl=f[lc].cl,f[g].cr=f[rc].cr;
f[g].sum=f[lc].sum+f[rc].sum;
if(f[lc].cr==f[rc].cl) f[g].sum--;
}
void push_down(int g)
{
if(f[g].flag)
{
int lc=f[g].lc,rc=f[g].rc;
f[lc].flag=f[rc].flag=true;
f[lc].cl=f[lc].cr=f[rc].cl=f[rc].cr=f[g].cl;
f[lc].sum=f[rc].sum=;
f[g].flag=false;
}
}
void build(int &g,int l,int r)
{
g=++tot;
f[g].l=l,f[g].r=r;
if(l==r)
{
f[g].flag=true,f[g].sum=;
f[g].cl=f[g].cr=d[re[l]];
return ;
}
int mid=(l+r)>>;
build(f[g].lc,l,mid);
build(f[g].rc,mid+,r);
push_up(g);
}
void add(int g,int l,int r,int c)
{
if(f[g].l>=l && f[g].r<=r)
f[g].flag=true,f[g].cl=f[g].cr=c,f[g].sum=;
else
{
push_down(g);
int mid=(f[g].l+f[g].r)>>;
if(r<=mid) add(f[g].lc,l,r,c);
else if(l>mid) add(f[g].rc,l,r,c);
else add(f[g].lc,l,mid,c),add(f[g].rc,mid+,r,c);
push_up(g);
}
}
void Add(int x,int y,int c)
{
int px=top[x],py=top[y];
while(px!=py)
if(deep[px]>deep[py])
add(rt,dfn[px],dfn[x],c),x=fa[px],px=top[x];
else add(rt,dfn[py],dfn[y],c),y=fa[py],py=top[y];
if(dfn[x]<dfn[y]) add(rt,dfn[x],dfn[y],c);
else add(rt,dfn[y],dfn[x],c);
}
int get(int g,int l,int r)
{
if(f[g].l==L) a=f[g].cl;
if(f[g].r==R) b=f[g].cr;
if(f[g].l>=l && f[g].r<=r)
return f[g].sum;
else
{
push_down(g);
int mid=(f[g].l+f[g].r)>>;
if(r<=mid) return get(f[g].lc,l,r);
else if(l>mid) return get(f[g].rc,l,r);
else
{
int ans=get(f[g].lc,l,mid)+get(f[g].rc,mid+,r);
if(f[f[g].lc].cr==f[f[g].rc].cl) ans--;
return ans;
}
}
}
int Get(int x,int y)
{
int ans=;
int px=top[x],py=top[y];
int l_x=-,l_y=-;
while(px!=py)
if(deep[px]>deep[py])
{
L=dfn[px],R=dfn[x];
ans+=get(rt,dfn[px],dfn[x]);
x=fa[px],px=top[x];
if(b==l_x) ans--;
l_x=a;
}
else
{
L=dfn[py],R=dfn[y];
ans+=get(rt,dfn[py],dfn[y]);
y=fa[py],py=top[y];
if(b==l_y) ans--;
l_y=a;
}
if(dfn[x]>dfn[y]) swap(x,y),swap(l_x,l_y);
L=dfn[x],R=dfn[y];
ans+=get(rt,dfn[x],dfn[y]);
if(a==l_x) ans--;
if(b==l_y) ans--;
return ans;
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++) scanf("%d",&d[i]);
for(int i=;i<n;i++)
{
scanf("%d%d",&u,&v);
link[u].push_back(v);
link[v].push_back(u);
}
dfs1(,);
top[]=,dfs2(,);
build(rt,,cnt);
while(m--)
{
scanf("%s%d%d",s,&u,&v);
if(s[]=='C')
{
scanf("%d",&c);
Add(u,v,c);
}
else if(s[]=='Q')
printf("%d\n",Get(u,v));
}
return ;
}

[SDOI2011]染色(树链剖分)的更多相关文章

  1. BZOJ 2243: [SDOI2011]染色 [树链剖分]

    2243: [SDOI2011]染色 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 6651  Solved: 2432[Submit][Status ...

  2. bzoj-2243 2243: [SDOI2011]染色(树链剖分)

    题目链接: 2243: [SDOI2011]染色 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 6267  Solved: 2291 Descript ...

  3. 【BZOJ2243】[SDOI2011]染色 树链剖分+线段树

    [BZOJ2243][SDOI2011]染色 Description 给定一棵有n个节点的无根树和m个操作,操作有2类: 1.将节点a到节点b路径上所有点都染成颜色c: 2.询问节点a到节点b路径上的 ...

  4. Bzoj 2243: [SDOI2011]染色 树链剖分,LCT,动态树

    2243: [SDOI2011]染色 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 5020  Solved: 1872[Submit][Status ...

  5. bzoj2243[SDOI2011]染色 树链剖分+线段树

    2243: [SDOI2011]染色 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 9012  Solved: 3375[Submit][Status ...

  6. BZOJ 2243: [SDOI2011]染色 树链剖分 倍增lca 线段树

    2243: [SDOI2011]染色 Time Limit: 20 Sec  Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/pr ...

  7. BZOJ 2243: [SDOI2011]染色 树链剖分+线段树区间合并

    2243: [SDOI2011]染色 Description 给定一棵有n个节点的无根树和m个操作,操作有2类: 1.将节点a到节点b路径上所有点都染成颜色c: 2.询问节点a到节点b路径上的颜色段数 ...

  8. 2243: [SDOI2011]染色(树链剖分+线段树)

    2243: [SDOI2011]染色 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 8400  Solved: 3150[Submit][Status ...

  9. Luogu P2486 [SDOI2011]染色(树链剖分+线段树合并)

    Luogu P2486 [SDOI2011]染色 题面 题目描述 输入输出格式 输入格式: 输出格式: 对于每个询问操作,输出一行答案. 输入输出样例 输入样例: 6 5 2 2 1 2 1 1 1 ...

  10. [bzoj 2243]: [SDOI2011]染色 [树链剖分][线段树]

    Description 给定一棵有n个节点的无根树和m个操作,操作有2类: 1.将节点a到节点b路径上所有点都染成颜色c: 2.询问节点a到节点b路径上的颜色段数量(连续相同颜色被认为是同一段),如“ ...

随机推荐

  1. ASP.NET WebForm Identity使用

    环境 win10企业版x64+visual studio 2017+.net 4.5 step1 基本使用+邮件确认+密码重置 https://docs.microsoft.com/en-us/asp ...

  2. c++修改系统环境变量 (修改注册表以后,立刻使用SendMessageTimeout(HWND_BROADCAST进行广播)

    #include "stdafx.h" #include "addPath.h" #define _AFXDLL #include <afxwin.h&g ...

  3. python 可变参数示例

    练习1:请使用**kw的方式,把可变的所有参数, # 算一字典的value乘积 def fun(**kw): product =1 for k ,v in kw.items(): if isinsta ...

  4. AI炼丹 - 深度学习必备库 numpy

    目录 深度学习必备库 - Numpy 1. 基础数据结构ndarray数组 1.1 为什么引入ndarray数组 1.2 如何创建ndarray数组 1.3 ndarray 数组的基本运算 1.4 n ...

  5. 一张图帮你记忆,Spring Boot 应用在启动阶段执行代码的几种方式

    前言 有时候我们需要在应用启动时执行一些代码片段,这些片段可能是仅仅是为了记录 log,也可能是在启动时检查与安装证书 ,诸如上述业务要求我们可能会经常碰到 Spring Boot 提供了至少 5 种 ...

  6. Javascript事件系统

    本文内容 事件基础 事件监听方式 事件默认行为 事件冒泡与事件捕获 事件绑定与事件委托 事件基础 注意:本文不会深入探究Javascript的事件循环. 提到事件,相信每位Javascript开发者都 ...

  7. Java方法的参数传递是值传递还是引用传递?

    当基本数据类型(Boolean,byte,char,String,int,Long,float,double)作为参数传递时,传递的是实参值的副本,即传的是值,无论在函数中怎么操作这个副本,实参的值是 ...

  8. DEVOPS技术实践_21:Pipeline的嵌套以及流程控制的if和case语句

    1 if控制语句 使用一个简单的If控制语句 pipeline { agent any stages { stage('flow control') { steps { script { == ) { ...

  9. 曹工改bug--这次,我遇到了一个难缠的栈溢出bug,还是日志相关的,真的难

    前言 前几天,在linux上部署一个war包应用时,tomcat直接起不来,查看tomcat的日志,catalina.out里没啥特别的,但是查看localhost日志,发现栈溢出了. [root@l ...

  10. $loj$10222 佳佳的$Fibonacci$ 矩阵快速幂

    正解:矩阵快速幂 解题报告: 我永远喜欢loj! 一看到这个就应该能想到矩阵快速幂? 然后就考虑转移式,发现好像直接想不好想,,,主要的问题在于这个*$i$,就很不好搞$QAQ$ 其实不难想到,$\s ...