9种分布式ID生成之 美团(Leaf)实战
整理了一些Java方面的架构、面试资料(微服务、集群、分布式、中间件等),有需要的小伙伴可以关注公众号【程序员内点事】,无套路自行领取
更多优选
- 一口气说出 9种 分布式ID生成方式,面试官有点懵了
- 面试总被问分库分表怎么办?你可以这样怼他
- 3万字总结,Mysql优化之精髓
- 为了不复制粘贴,我被逼着学会了JAVA爬虫
- 技术部突然宣布:JAVA开发人员全部要会接口自动化测试框架
- Redis 5种数据结构及对应使用场景,全会面试要加分的
引言
前几天写过一篇《一口气说出 9种 分布式ID生成方式,面试官有点懵了》,里边简单的介绍了九种分布式ID生成方式,但是对于像美团(Leaf)
、滴滴(Tinyid)
、百度(uid-generator)
都是一笔带过。而通过读者留言发现,大家普遍对他们哥三更感兴趣,所以后边会结合实战,详细的对三种分布式ID生成器学习,今天先啃下美团(Leaf)
。
不了解分布式ID的同学,先行去看《一口气说出 9种 分布式ID生成方式,面试官有点懵了》温习一下基础知识,这里就不再赘述了
美团(Leaf)
Leaf
是美团推出的一个分布式ID生成服务,名字取自德国哲学家、数学家莱布尼茨的一句话:“There are no two identical leaves in the world.”(“世界上没有两片相同的树叶”),取个名字都这么有寓意,美团程序员牛掰啊!
Leaf
的优势:高可靠
、低延迟
、全局唯一
等特点。
目前主流的分布式ID生成方式,大致都是基于数据库号段模式
和雪花算法(snowflake)
,而美团(Leaf)刚好同时兼具了这两种方式,可以根据不同业务场景灵活切换。
接下来结合实战,详细的介绍一下Leaf
的Leaf-segment号段模式
和Leaf-snowflake模式
一、 Leaf-segment号段模式
Leaf-segment
号段模式是对直接用数据库自增ID
充当分布式ID
的一种优化,减少对数据库的频率操作。相当于从数据库批量的获取自增ID,每次从数据库取出一个号段范围,例如 (1,1000] 代表1000个ID,业务服务将号段在本地生成1~1000的自增ID并加载到内存.。
大致的流程入下图所示:
号段耗尽之后再去数据库获取新的号段,可以大大的减轻数据库的压力。对max_id
字段做一次update
操作,update max_id= max_id + step
,update成功则说明新号段获取成功,新的号段范围是(max_id ,max_id +step
]。
由于依赖数据库,我们先设计一下表结构:
CREATE TABLE `leaf_alloc` (
`biz_tag` varchar(128) NOT NULL DEFAULT '' COMMENT '业务key',
`max_id` bigint(20) NOT NULL DEFAULT '1' COMMENT '当前已经分配了的最大id',
`step` int(11) NOT NULL COMMENT '初始步长,也是动态调整的最小步长',
`description` varchar(256) DEFAULT NULL COMMENT '业务key的描述',
`update_time` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP COMMENT '数据库维护的更新时间',
PRIMARY KEY (`biz_tag`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;
预先插入一条测试的业务数据
INSERT INTO `leaf_alloc` (`biz_tag`, `max_id`, `step`, `description`, `update_time`) VALUES ('leaf-segment-test', '0', '10', '测试', '2020-02-28 10:41:03');
biz_tag
:针对不同业务需求,用biz_tag字段来隔离,如果以后需要扩容时,只需对biz_tag分库分表即可max_id
:当前业务号段的最大值,用于计算下一个号段step
:步长,也就是每次获取ID的数量description
:对于业务的描述,没啥好说的
将Leaf项目下载到本地:https://github.com/Meituan-Dianping/Leaf
修改一下项目中的leaf.properties
文件,添加数据库配置
leaf.name=com.sankuai.leaf.opensource.test
leaf.segment.enable=true
leaf.jdbc.url=jdbc:mysql://127.0.0.1:3306/xin-master?useUnicode=true&characterEncoding=utf8
leaf.jdbc.username=junkang
leaf.jdbc.password=junkang
leaf.snowflake.enable=false
注意:leaf.snowflake.enable
与 leaf.segment.enable
是无法同时开启的,否则项目将无法启动。
配置相当的简单,直接启动LeafServerApplication
后就OK了,接下来测试一下,leaf
是基于Http请求
的发号服务, LeafController
中只有两个方法,一个号段接口,一个snowflake接口,key
就是数据库中预先插入的业务biz_tag
。
@RestController
public class LeafController {
private Logger logger = LoggerFactory.getLogger(LeafController.class);
@Autowired
private SegmentService segmentService;
@Autowired
private SnowflakeService snowflakeService;
/**
* 号段模式
* @param key
* @return
*/
@RequestMapping(value = "/api/segment/get/{key}")
public String getSegmentId(@PathVariable("key") String key) {
return get(key, segmentService.getId(key));
}
/**
* 雪花算法模式
* @param key
* @return
*/
@RequestMapping(value = "/api/snowflake/get/{key}")
public String getSnowflakeId(@PathVariable("key") String key) {
return get(key, snowflakeService.getId(key));
}
private String get(@PathVariable("key") String key, Result id) {
Result result;
if (key == null || key.isEmpty()) {
throw new NoKeyException();
}
result = id;
if (result.getStatus().equals(Status.EXCEPTION)) {
throw new LeafServerException(result.toString());
}
return String.valueOf(result.getId());
}
}
访问:http://127.0.0.1:8080/api/segment/get/leaf-segment-test
,结果正常返回,感觉没毛病,但当查了一下数据库表中数据时发现了一个问题。
通常在用号段模式的时候,取号段的时机是在前一个号段消耗完的时候进行的,可刚刚才取了一个ID,数据库中却已经更新了max_id
,也就是说leaf
已经多获取了一个号段,这是什么鬼操作?
Leaf
为啥要这么设计呢?
Leaf
希望能在DB中取号段的过程中做到无阻塞!
当号段耗尽时再去DB中取下一个号段,如果此时网络发生抖动,或者DB发生慢查询,业务系统拿不到号段,就会导致整个系统的响应时间变慢,对流量巨大的业务,这是不可容忍的。
所以Leaf
在当前号段消费到某个点时,就异步的把下一个号段加载到内存中。而不需要等到号段用尽的时候才去更新号段。这样做很大程度上的降低了系统的风险。
那么某个点
到底是什么时候呢?
这里做了一个实验,号段设置长度为step=10
,max_id=1
,
当我拿第一个ID时,看到号段增加了,1/10
当我拿第三个Id时,看到号段又增加了,3/10
Leaf
采用双buffer
的方式,它的服务内部有两个号段缓存区segment
。当前号段已消耗10%时,还没能拿到下一个号段,则会另启一个更新线程去更新下一个号段。
简而言之就是Leaf
保证了总是会多缓存两个号段,即便哪一时刻数据库挂了,也会保证发号服务可以正常工作一段时间。
通常推荐号段(segment
)长度设置为服务高峰期发号QPS的600倍(10分钟),这样即使DB宕机,Leaf仍能持续发号10-20分钟不受影响。
优点:
- Leaf服务可以很方便的线性扩展,性能完全能够支撑大多数业务场景。
- 容灾性高:Leaf服务内部有号段缓存,即使DB宕机,短时间内Leaf仍能正常对外提供服务。
缺点:
- ID号码不够随机,能够泄露发号数量的信息,不太安全。
- DB宕机会造成整个系统不可用(用到数据库的都有可能)。
二、Leaf-snowflake
Leaf-snowflake
基本上就是沿用了snowflake的设计,ID组成结构:正数位
(占1比特)+ 时间戳
(占41比特)+ 机器ID
(占5比特)+ 机房ID
(占5比特)+ 自增值
(占12比特),总共64比特组成的一个Long类型。
Leaf-snowflake
不同于原始snowflake算法地方,主要是在workId的生成上,Leaf-snowflake
依靠Zookeeper
生成workId
,也就是上边的机器ID
(占5比特)+ 机房ID
(占5比特)。Leaf
中workId是基于ZooKeeper的顺序Id
来生成的,每个应用在使用Leaf-snowflake时,启动时都会都在Zookeeper中生成一个顺序Id,相当于一台机器对应一个顺序节点,也就是一个workId。
Leaf-snowflake
启动服务的过程大致如下:
- 启动Leaf-snowflake服务,连接Zookeeper,在leaf_forever父节点下检查自己是否已经注册过(是否有该顺序子节点)。
- 如果有注册过直接取回自己的workerID(zk顺序节点生成的int类型ID号),启动服务。
- 如果没有注册过,就在该父节点下面创建一个持久顺序节点,创建成功后取回顺序号当做自己的workerID号,启动服务。
但Leaf-snowflake
对Zookeeper是一种弱依赖关系,除了每次会去ZK拿数据以外,也会在本机文件系统上缓存一个workerID
文件。一旦ZooKeeper出现问题,恰好机器出现故障需重启时,依然能够保证服务正常启动。
启动Leaf-snowflake
模式也比较简单,起动本地ZooKeeper,修改一下项目中的leaf.properties
文件,关闭leaf.segment模式
,启用leaf.snowflake
模式即可。
leaf.segment.enable=false
#leaf.jdbc.url=jdbc:mysql://127.0.0.1:3306/xin-master?useUnicode=true&characterEncoding=utf8
#leaf.jdbc.username=junkang
#leaf.jdbc.password=junkang
leaf.snowflake.enable=true
leaf.snowflake.zk.address=127.0.0.1
leaf.snowflake.port=2181
/**
* 雪花算法模式
* @param key
* @return
*/
@RequestMapping(value = "/api/snowflake/get/{key}")
public String getSnowflakeId(@PathVariable("key") String key) {
return get(key, snowflakeService.getId(key));
}
测试一下,访问:http://127.0.0.1:8080/api/snowflake/get/leaf-segment-test
优点:
- ID号码是趋势递增的8byte的64位数字,满足上述数据库存储的主键要求。
缺点:
- 依赖ZooKeeper,存在服务不可用风险(实在不知道有啥缺点了)
三、Leaf监控
请求地址:http://127.0.0.1:8080/cache
针对服务自身的监控,Leaf提供了Web层的内存数据映射界面,可以实时看到所有号段的下发状态。比如每个号段双buffer的使用情况,当前ID下发到了哪个位置等信息都可以在Web界面上查看。
总结
对于Leaf具体使用哪种模式,还是根据具体的业务场景使用,本文并没有对Leaf源码做过多的分析,因为Leaf 代码量简洁很好阅读。后续还会把其他几种分布式ID生成器,依次结合实战介绍给大家,欢迎大家关注。
今天就说这么多,如果本文对您有一点帮助,希望能得到您一个点赞
分布式 ID 在庞大复杂的分布式系统中,通常需要对海量数据进行唯一标识,随着数据日渐增长,对数据分库分表以后需要有一个唯一 ID 来标识一条数据,而数据库的自增 ID 显然不能满足需求,此时就需要有一 ... 分布式架构会涉及到分布式全局唯一ID的生成,今天我就来详解分布式全局唯一ID,以及分布式全局唯一ID的实现方案@mikechen 什么是分布式系统唯一ID 在复杂分布式系统中,往往需要对大量的数据和消 ... Leaf是美团基础研发平台推出的一个分布式ID生成服务,名字取自德国哲学家.数学家莱布尼茨的一句话:“There are no two identical leaves in the world.”L ... 本文已经收录自 JavaGuide (60k+ Star[Java学习+面试指南] 一份涵盖大部分Java程序员所需要掌握的核心知识.) 本文授权转载自:https://juejin.im/post/ ... Leaf——美团点评分布式ID生成系统 https://tech.meituan.com/MT_Leaf.html 本文来自美团技术团队“照东”的分享,原题<Leaf——美团点评分布式ID生成系统>,收录时有勘误.修订并重新排版,感谢原作者的分享. 1.引言 鉴于IM系统中聊天消息ID生成算法和生成策略 ... 基于Orleans的分布式Id生成方案,因Orleans的单实例.单线程模型,让这种实现变的简单,贴出一种实现,欢迎大家提出意见 public interface ISequenceNoGenerat ... 整理了一些Java方面的架构.面试资料(微服务.集群.分布式.中间件等),有需要的小伙伴可以关注公众号[程序员内点事],无套路自行领取 本文作者:程序员内点事 原文链接:https://mp.weix ... 一.为什么要用分布式ID? 在说分布式ID的具体实现之前,我们来简单分析一下为什么用分布式ID?分布式ID应该满足哪些特征? 1.1.什么是分布式ID? 拿MySQL数据库举个栗子:在我们业务数据量不 ... 比赛感想 本来21:05开始的比赛,结果记成21:30了...晚了25分钟才开始[捂脸] 这次是Educational Round,所以还比较简单. 前两道题一眼看去模拟+贪心,怕错仔细看了好几遍题, ... 在Pycharm里使用转义字符\r和在IDLE里使用\r产生的结果是不一样的. 例子如下: print("你好!\r我是Python!") 输出结果为: 我是Python! 前面的 ... 上图请求头内容,内容多不说,也不确认哪些数据是必须的,网上找到一个懒办法 快速一键生成 Python 爬虫请求头 实战演练 抓取网站:https://developer.mozilla.org... ... 基于Flask框架搭建视频网站的学习日志(二)2020/02/02 一.初始化 所有的Flask程序都必须创建一个程序实例,程序实例是Flask类的对象 from flask import Flask ... 上下拉刷新控件MJRefresh 一.类结构 MJRefreshComponent.h MJRefreshHeader.h MJRefreshFooter.h MJRefreshAutoFooter. ... 1. IO概览 2. 字符流与字节流的区别 windows RabbitMQ安装与配置 1.安装Erlang 下载地址: http://www.erlang.org/downloads 注意: 右键以管理员身份进行安装,否则将导致后续无法启动 ... 一 安装Redis 1. 从https://redis.io/download redis官网下载二进制包安装 例如:wget http://download.redis.io/releases/re ... 前言 1Filter实现框架拦截 1配置自定义Filter 2创建一个Filter 3创建一个ActionMapping 4创建一个ActionMapper 5创建一个WebExecutor 6创建测 ... 原文出处:http://my.oschina.net/chengjiansunboy/blog/55496?p=2#comments 1. 如何修改jQuery默认编码(例如默认UTF-8改成改GB2 ...9种分布式ID生成之 美团(Leaf)实战的更多相关文章
随机推荐