因为行可以了,那列就不行,所以根据行列建立最小割模型。

然后这题精妙之处在于把乘法取对数后转化为加法,瞬间就简单了。

保证精度,C++AC ,16MS G++WA。

#include<stdio.h>
#include<string.h>
#include<queue>
#include<math.h>
#define maxn 120
#define INF 10000000
using namespace std;
struct node
{
int to;
double v;
int flag;
int next;
}edge[];
int pre[maxn],index,vis[maxn],n,m,L,st,se;
double col[],row[];
double min(double x,double y)
{
return x<y?x:y;
}
void add(int x,int y,double z)
{
edge[index].to=y;
edge[index].v=z;
edge[index].flag=index+;
edge[index].next=pre[x];
pre[x]=index++;
edge[index].to=x;
edge[index].v=;
edge[index].flag=index-;
edge[index].next=pre[y];
pre[y]=index++;
}
double dfs(int u,double low)
{
int i;
double used=;
if(u==se)return low;
for(i=pre[u];i!=-;i=edge[i].next)
{
if(vis[edge[i].to]==vis[u]+&&edge[i].v>)
{
double a=dfs(edge[i].to,min(low-used,edge[i].v));
edge[i].v-=a;
edge[edge[i].flag].v+=a;
used+=a;
if(used-low>1e-)break;
}
}
if(!used)vis[u]=-;
return used;
}
int BFS()
{
int i;
queue<int>q;
memset(vis,-,sizeof(vis));
vis[]=;
q.push();
while(!q.empty())
{
int t=q.front();
q.pop();
for(i=pre[t];i!=-;i=edge[i].next)
{
if(vis[edge[i].to]<&&edge[i].v>)
{
vis[edge[i].to]=vis[t]+;
q.push(edge[i].to);
}
}
}
return vis[se]!=-;
}
void init()
{
int i;
index=;
st=,se=;
memset(pre,-,sizeof(pre));
scanf("%d%d%d",&n,&m,&L);
for(i=;i<=n;i++)
{
scanf("%lf",&row[i]);
add(st,i,log(row[i]));
}
for(i=;i<=m;i++)
{
scanf("%lf",&col[i]);
add(i+,se,log(col[i]));
}
for(i=;i<L;i++)
{
int x,y;
scanf("%d%d",&x,&y);
add(x,+y,INF*1.0);
}
}
void slove()
{
double ans=;
while(BFS())
{
while()
{
double a=dfs(,INF*1.0);
if(a<1e-)break;
ans+=a;
}
}
printf("%.4lf\n",exp(ans));
}
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
init();
slove();
}
}

poj3308 最小割的更多相关文章

  1. ACM/ICPC 之 伞兵-最小割转最大流(POJ3308)

    //以行列建点,伞兵位置为单向边-利用对数将乘积转加法 //最小割转最大流 //Time:63Ms Memory:792K #include<iostream> #include<c ...

  2. POJ3308 Paratroopers(最小割/二分图最小点权覆盖)

    把入侵者看作边,每一行每一列都是点,选取某一行某一列都有费用,这样问题就是选总权最小的点集覆盖所有边,就是最小点权覆盖. 此外,题目的总花费是所有费用的乘积,这时有个技巧,就是取对数,把乘法变为加法运 ...

  3. poj3308 Paratroopers --- 最小点权覆盖-&gt;最小割

    题目是一个非常明显的二分图带权匹配模型, 加入源点到nx建边,ny到汇点建边,(nx.ny)=inf建边.求最小割既得最小点权覆盖. 在本题中因为求的是乘积,所以先所有取log转换为加法,最后再乘方回 ...

  4. BZOJ 1391: [Ceoi2008]order [最小割]

    1391: [Ceoi2008]order Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 1509  Solved: 460[Submit][Statu ...

  5. BZOJ-2127-happiness(最小割)

    2127: happiness(题解) Time Limit: 51 Sec  Memory Limit: 259 MBSubmit: 1806  Solved: 875 Description 高一 ...

  6. BZOJ-2561-最小生成树 题解(最小割)

    2561: 最小生成树(题解) Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1628  Solved: 786 传送门:http://www.lyd ...

  7. BZOJ3438 小M的作物(最小割)

    题目 Source http://www.lydsy.com/JudgeOnline/problem.php?id=3438 Description 小M在MC里开辟了两块巨大的耕地A和B(你可以认为 ...

  8. 最大流-最小割 MAXFLOW-MINCUT ISAP

    简单的叙述就不必了. 对于一个图,我们要找最大流,对于基于增广路径的算法,首先必须要建立反向边. 反向边的正确性: 我努力查找了许多资料,都没有找到理论上关于反向边正确性的证明. 但事实上,我们不难理 ...

  9. bzoj1412最小割

    太羞耻了,m n写反了(主要是样例n m相等) 建图方法比较高(ji)端(chu),对于可以加栅栏的地方连上1的边,然后求最小割即可 为了让代码优(suo)美(duan),我写了一个check,避免多 ...

随机推荐

  1. Java学习笔记 - 类方法与代码块的执行顺序

    类的初始化顺序 使用一个简单的父子类例子来做示范,代码执行顺序在代码后有标注. class Parent { public static String p_StaticField = "父类 ...

  2. Python实例4- 列表到字典的函数,针对好玩游戏物品清单

    假设征服一条龙的战利品表示为这样的字符串列表: dragonLoot = ['gold coin', 'dagger', 'gold coin', 'gold coin', 'ruby'] 写一个名为 ...

  3. 15分钟构建超低成本数据大屏:DataV + DLA

    第一步:准备低成本存储的业务数据和DLA表 OSS(https://www.aliyun.com/product/oss)是云上低成本数据存储的优选方案 DLA(https://www.aliyun. ...

  4. redis教程(一)-----redis数据类型、基本命令、发布订阅以及持久化

    简介 Redis是一个开源的使用ANSI C语言编写.支持网络.可基于内存亦可持久化的日志型.Key-Value数据库,并提供多种语言的API.从2010年3月15日起,Redis的开发工作由VMwa ...

  5. WPF绘图性能问题

    代码: /// <summary> /// MainWindow.xaml 的交互逻辑 /// </summary> public partial class MainWind ...

  6. 洛谷P1062 数列 [2017年6月计划 数论03]

    P1062 数列 题目描述 给定一个正整数k(3≤k≤15),把所有k的方幂及所有有限个互不相等的k的方幂之和构成一个递增的序列,例如,当k=3时,这个序列是: 1,3,4,9,10,12,13,… ...

  7. C位域的初步了解

    以为C中的东西了解的差不多了...今天却是第一次才看到位域这个概念, 闲来无事的时候读起了编程之美,看一个问题的时候有种解答用到了位域, 位域的结构体定义,变量声明和结构体很相似: struct (结 ...

  8. fedora安装mod_python

    3.1 Installing mod_python To install mod_python, we simply run: yum install mod_python 3.2 Configuri ...

  9. python输出最大公约数和最小公倍数

    def myfun(): num1 = int(input('输入num1')) num2 = int(input('输入num2')) list1=[] for i in range(1, max( ...

  10. jQuery中的工具和插件

    jQuery的工具属性 jQuery类数组操作 length属性 表示获取类数组中元素的个数 get()方法 表示获取类数组中单个元素"括号中填写该元素的索引值" index()方 ...