【JZOJ2224】【NOI2006】最大获利
题目描述
新的技术正冲击着手机通讯市场,对于各大运营商来说,这既是机遇,更是挑战。THU集团旗下的CS&T通讯公司在新一代通讯技术血战的前夜,需要做太多的准备工作,仅就站址选择一项,就需要完成前期市场研究、站址勘测、最优化等项目。
在前期市场调查和站址勘测之后,公司得到了一共N个可以作为通讯信号中转站的地址,而由于这些地址的地理位置差异,在不同的地方建造通讯中转站需要投入的成本也是不一样的,所幸在前期调查之后这些都是已知数据:建立第i个通讯中转站需要的成本为Pi(1≤i≤N)。
另外公司调查得出了所有期望中的用户群,一共M个。关于第i个用户群的信息概括为Ai, Bi和Ci:这些用户会使用中转站Ai和中转站Bi进行通讯,公司可以获益Ci。(1≤i≤M, 1≤Ai, Bi≤N)
THU集团的CS&T公司可以有选择的建立一些中转站(投入成本),为一些用户提供服务并获得收益(获益之和)。那么如何选择最终建立的中转站才能让公司的净获利最大呢?(净获利 = 获益之和 - 投入成本之和)
输入
输入文件中第一行有两个正整数N和M 。
第二行中有N个整数描述每一个通讯中转站的建立成本,依次为P1, P2, …, PN 。
以下M行,第(i + 2)行的三个数Ai, Bi和Ci描述第i个用户群的信息。
所有变量的含义可以参见题目描述。
输出
你的程序只要向输出文件输出一个整数,表示公司可以得到的最大净获利。
样例输入
5 5
1 2 3 4 5
1 2 3
2 3 4
1 3 3
1 4 2
4 5 3
样例输出
4
数据范围
80%的数据中:N≤200,M≤1 000。
100%的数据中:N≤5 000,M≤50 000,0≤Ci≤100,0≤Pi≤100。
样例解释
选择建立1、2、3号中转站,则需要投入成本6,获利为10,因此得到最大收益4。
解法
网络流建模——最大权闭合子图:
把一个用户群视为一个权值为ci的点,每个中转站视为一个权值为-pi的点。
每个代表用户群的点向代表ai和bi的中转站的点连一条有向边。
那么就是求原图的最大权闭合子图。
建模:
源点向所有权值为正的点连一条容量为其权值的边;
所有权值为负的点向汇点连一条容量为其权值的绝对值的边;
原图中有的边照搬并具有无穷大容量。
代码
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#define ll long long
#define sqr(x) ((x)*(x))
#define ln(x,y) int(log(x)/log(y))
#define lab(x) x+m+1
#define user(x) x+1
using namespace std;
const char* fin="ex2224.in";
const char* fout="ex2224.out";
const int inf=0x7fffffff;
const int maxn=60007,maxm=maxn*10;
int n,m,i,j,k,l,tot=1,num,sum,ans;
int fi[maxn],la[maxm],ne[maxm],va[maxm];
int bz[maxn],cnt[maxm];
void add_line(int a,int b,int c){
tot++;
ne[tot]=fi[a];
la[tot]=b;
va[tot]=c;
fi[a]=tot;
}
void add(int v,int u,int r){
add_line(v,u,r);
add_line(u,v,0);
}
int gap(int v,int flow){
int i,use=0,k;
if (v==num) return flow;
for (k=fi[v];k;k=ne[k])
if (va[k] && bz[v]==bz[la[k]]+1){
i=gap(la[k],min(flow-use,va[k]));
use+=i;
va[k]-=i;
va[k^1]+=i;
if (use==flow || bz[1]==num) return use;
}
if (!--cnt[bz[v]]) bz[1]=num;
cnt[++bz[v]]++;
return use;
}
int main(){
scanf("%d%d",&n,&m);
num=n+m+2;
for (i=1;i<=n;i++){
scanf("%d",&j);
add(lab(i),num,j);
}
for (i=1;i<=m;i++){
scanf("%d%d%d",&j,&k,&l);
add(1,user(i),l);
add(user(i),lab(j),inf);
add(user(i),lab(k),inf);
sum+=l;
}
cnt[0]=num;
while (bz[1]<num) ans+=gap(1,inf);
ans=sum-ans;
printf("%d",ans);
return 0;
}
启发
存在依赖关系的点,即有最大权闭合子图;
譬如选择一个点,必须选他的后继之类的。
【JZOJ2224】【NOI2006】最大获利的更多相关文章
- [NOI2006] 最大获利
[NOI2006] 最大获利 ★★★☆ 输入文件:profit.in 输出文件:profit.out 简单对比时间限制:2 s 内存限制:512 MB [问题描述] 新的技术正冲击着手 ...
- BZOJ1497: [NOI2006]最大获利[最小割 最大闭合子图]
1497: [NOI2006]最大获利 Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 4375 Solved: 2142[Submit][Status] ...
- BZOJ 1497: [NOI2006]最大获利 最小割
1497: [NOI2006]最大获利 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=1497 Description 新的技术正冲击着手 ...
- 网络流(最大流):COGS 28 [NOI2006] 最大获利
28. [NOI2006] 最大获利 ★★★☆ 输入文件:profit.in 输出文件:profit.out 简单对比 时间限制:2 s 内存限制:512 MB [问题描述] 新的技术 ...
- BZOJ 1497: [NOI2006]最大获利( 最大流 )
下午到周六早上是期末考试...但是我还是坚守在机房....要挂的节奏啊.... 这道题就是网络流 , 建图后就最大流跑啊跑啊跑... --------------------------------- ...
- BZOJ 1497: [NOI2006]最大获利(最大权闭合子图)
1497: [NOI2006]最大获利 Time Limit: 5 Sec Memory Limit: 64 MB Description 新的技术正冲击着手机通讯市场,对于各大运营商来说,这既是机 ...
- P4174 [NOI2006]最大获利(网络流)
P4174 [NOI2006]最大获利 还是最大权闭合子图的题 对于每个中转站$k$:$link(k,T,P_k)$ 对于每个用户$i$.中转站$A_i,B_i$.贡献$C_i$ $link(S,i, ...
- 洛谷 P4174 [NOI2006]最大获利 解题报告
P4174 [NOI2006]最大获利 题目描述 新的技术正冲击着手机通讯市场,对于各大运营商来说,这既是机遇,更是挑战.THU 集团旗下的 CS&T 通讯公司在新一代通讯技术血战的前夜,需要 ...
- BZOJ 1497 [NOI2006]最大获利
1497: [NOI2006]最大获利 Description 新的技术正冲击着手机通讯市场,对于各大运营商来说,这既是机遇,更是挑战.THU集团旗下的CS&T通讯公司在新一代通讯技术血战的前 ...
- 【bzoj1479】[NOI2006]最大获利
1497: [NOI2006]最大获利 Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 4335 Solved: 2123[Submit][Status] ...
随机推荐
- 自定义切面实现用户日志记录--AOP
在软件业,AOP为Aspect Oriented Programming的缩写,意为:面向切面编程,通过预编译方式和运行期动态代理实现程序功能的统一维护的一种技术.AOP是OOP的延续,是软件开发中的 ...
- Spring Boot 容器选择 Undertow 而不是 Tomcat Spring Boot 内嵌容器Unde
Spring Boot 内嵌容器Undertow参数设置 配置项: # 设置IO线程数, 它主要执行非阻塞的任务,它们会负责多个连接, 默认设置每个CPU核心一个线程 # 不要设置过大,如果过大,启动 ...
- 禅道Mysql默认密码修改
1.安装禅道之后进入MySql数据库时提示密码错误:(禅道数据库默认用户名和密码admin,密码无) 2.此时需要修改MySql用户名和密码才可进入禅道数据库: 3.在Linux中执行命令 /op ...
- python3没有了xrange
升级到python3的同学应该会注意到以前经常用的xrange没了! 是的,python3的range就是xrange.直接看效果! Python 2.7.13 (v2.7.13:a06454b1 ...
- win7旗舰版64位搭建FTP服务器
1.安装IIS组件:点击开始菜单->选择控制面板->程序->打开或关闭WINDOWS功能->展开Internet信息服务,勾选FTP服务器(包括FTP服务和FTP扩展性),展开 ...
- apache https 双向认证
Https分单向认证和双向认证 单向认证表现形式:网站URL链接为https://xxx.com格式 双向认证表现心事:网站URL链接为https://xxx.com格式,并且需要客户端浏览器安装一个 ...
- JDBC 操作数据库实例
JDBC是什么 JDBC代表Java数据库连接(Java Database Connectivity),它是用于Java编程语言和数据库之间的数据库无关连接的标准Java API,换句话说:JDBC是 ...
- SVG 动态添加元素与事件
SVG文件是由各个元素组成.元素由标签定义,而标签格式即html的元素定义格式.但是载入一个SVG文件,却无法通过常规的js获取对象方式来获取到SVG中定义的元素,更无法通过这种方式来动态添加SVG元 ...
- 洛谷P1312 [NOIP2011提高组Day1T3]Mayan游戏
Mayan游戏 题目描述 Mayan puzzle是最近流行起来的一个游戏.游戏界面是一个 7 行5 列的棋盘,上面堆放着一些方块,方块不能悬空堆放,即方块必须放在最下面一行,或者放在其他方块之上.游 ...
- 关于本地文件请求json文件
因为需要用到json数据格式,上网查了一下例子之后我就想本地测试一下看能不能成功. 结果,chrome下没有任何反应,打开控制台之后报错如下: XMLHttpRequest cannot load f ...