【转】Currying 的局限性
Currying 的局限性
很多基于 lambda calculus 的程序语言,比如 ML 和 Haskell,都习惯用一种叫做 currying 的手法来表示函数。比如,如果你在 Haskell 里面这样写一个函数:
f x y = x + y
然后你就可以这样把链表里的每个元素加上 2:
map (f 2) [1, 2, 3]
它会输出 [3, 4, 5]。
注意本来 f 需要两个参数才能算出结果,可是这里的 (f 2) 只给了 f 一个参数。这是因为 Haskell 的函数定义的缺省方式是“currying”。Currying 其实就是用“单参数”的函数,来模拟多参数的函数。比如,上面的 f 的定义在 Scheme 里面相当于:
(define f
(lambda (x)
(lambda (y)
(+ x y))))
它是说,函数 f,接受一个参数 x,返回另一个函数(没有名字)。这个匿名函数,如果再接受一个参数 y,就会返回 x + y。所以上面的例子里面,(f 2) 返回的是一个匿名函数,它会把 2 加到自己的参数上面返回。所以把它 map 到 [1, 2, 3],我们就得到了 [3, 4, 5]。
在这个例子里面,currying 貌似一个挺有用的东西,它让程序变得“简短”。如果不用 currying,你就需要制造另一个函数,写成这个样子:
map (\y->f 2 y) [1, 2, 3]
这就是为什么 Haskell 和 ML 的程序员那么喜欢 currying。这个做法其实来源于最早的 lambda calculus 的设计。因为 lambda calculus 的函数都只有一个参数,所以为了能够表示多参数的函数,有一个叫 Haskell Curry 的数学家和逻辑学家,发明了这个方法。
当然,Haskell Curry 是我很尊敬的人。不过我今天想指出的是,currying 在程序设计的实践中,其实并不是想象中的那么好。大量使用 currying,其实会带来程序难以理解,复杂性增加,并且还可能因此引起意想不到的错误。
不用 currying 的写法(\y->f 2 y)虽然比起 currying 的写法(f 2)长了那么一点,但是它有一点好。那就是你作为一个人(而不是机器),可以很清楚的从“\y->f 2 y”这个表达式,看到它的“用意”是什么。你会很清楚的看到:
“f 本来是一个需要两个参数的函数。我们只给了它第一个参数 2。我们想要把 [1, 2, 3] 这个链表里的每一个元素,放进 f 的第二个参数 y,然后把 f 返回的结果一个一个的放进返回值的链表里。”
仔细看看上面这段话说了什么吧,再来看看 (f 2) 是否表达了同样的意思?注意,我们现在的“重点”在于你,一个人,而不在于计算机。你仔细想,不要让思维的定势来影响你的判断。
你发现了吗?(f 2) 并不完全的含有 \y->f 2 y 所表达的内容。因为单从 (f 2) 这个表达式(不看它的定义),你看不到“f 总共需要几个参数”这一信息,你也看不到 (f 2) 会返回什么东西。f 有可能需要2个参数,也有可能需要3个,4个,5个…… 比如,如果它需要3个参数的话,map (f 2) [1, 2, 3] 就不会返回一个整数的链表,而会返回一个函数的链表,它看起来是这样:[(\z->f 2 1 z), (\z->f 2 2 z), (\z->f 2 3 z)]。这三个函数分别还需要一个参数,才会输出结果。
这样一来,表达式 (f 2) 含有的对“人”有用的信息,就比较少了。你不能很可靠地知道这个函数接受了一个参数之后会变成什么样子。当然,你可以去看 f 的定义,然后再回来,但是这里有一种“直觉”上的开销。如果你不能同时看见这些信息,你的脑子就需要多转一道弯,你就会缺少一些重要的直觉。这种直觉能帮助你写出更好的程序。
然而,currying 的问题不止在于这种“认知”的方面,有时候使用 curry 会直接带来代码复杂性的增加。比如,如果你的 f 定义不是加法,而是除法:
f x y = x / y
然后,我们现在需要把链表 [1, 2, 3] 里的每一个数都除以 2。你会怎么做呢?
map (f 2) [1, 2, 3] 肯定不行,因为 2 是除数,而不是被除数。熟悉 Haskell 的人都知道,可以这样做:
map (flip f 2) [1, 2, 3]
flip 的作用是“交换”两个参数的位置。它可以被定义为:
flip f x y = f y x
但是,如果 f 有 3 个参数,而我们需要把它的第 2 个参数 map 到一个链表,怎么办呢?比如,如果 f 被定义为:
f x y z = (x - y) / z
稍微动一下脑筋,你可能会想出这样的代码:
map (flip (f 1) 2) [1, 2, 3]
能想出这段代码说明你挺聪明,可是如果你这样写代码,那就是缺乏一些“智慧”。有时候,好的程序其实不在于显示你有多“聪明”,而在于显示你有多“笨”。现在我们就来看看笨一点的代码:
map (\y -> f 1 y 2) [1, 2, 3]
现在比较一下,你仍然觉得之前那段代码很聪明吗?如果你注意观察,就会发现 (flip (f 1) 2) 这个表达式,是多么的晦涩,多么的复杂。
从 (flip (f 1) 2) 里面,你几乎看不到自己想要干什么。而 \y-> f 1 y 2 却很明确的显示出,你想用 1 和 2 填充掉 f 的第一,三号参数,把第二个参数留下来,然后把得到的函数 map 到链表 [1, 2, 3]。仔细看看,是不是这样的?
所以你花费了挺多的脑力才把那使用 currying 的代码写出来,然后你每次看到它,还需要耗费同样多的脑力,才能明白你当时写它来干嘛。你是不是吃饱了没事干呢?
练习题:如果你还不相信,就请你用 currying 的方法(加上 flip)表达下面这个语句,也就是把 f 的第一个参数 map 到链表 [1, 2, 3]:
map (\y -> f y 1 2) [1, 2, 3]
得到结果之后再跟上面这个语句对比,看谁更加简单?
到现在你也许注意到了,以上的“笨办法”对于我们想要 map 的每一个参数,都是差不多的形式;而使用 currying 的代码,对于每个参数,形式有很大的差别。所以我们的“笨办法”其实才是以不变应万变的良策。
才三个参数,currying 就显示出了它的弱点,如果超过三个参数,那就更麻烦了。所以很多人为了写 currying 的函数,特意把参数调整到方便 currying 的顺序。可是程序的设计总是有意想不到的变化。有时候你需要增加一个参数,有时候你又想减少一个参数,有时候你又会有别的用法,导致你需要调整参数的顺序…… 事先安排好的那些参数顺序,很有可能不能满足你后来的需要。即使它能满足你后来的需要,你的函数也会因为 currying 而难以看懂。
这就是为什么我从来不在我的 ML 和 Haskell 程序里使用 currying 的原因。古老而美丽的理论,也许能够给我带来思想的启迪,可是未必就能带来工程中理想的效果。
【转】Currying 的局限性的更多相关文章
- 前端开发者进阶之函数柯里化Currying
穆乙:http://www.cnblogs.com/pigtail/p/3447660.html 在计算机科学中,柯里化(英语:Currying),又译为卡瑞化或加里化,是把接受多个参数的函数变换成接 ...
- 函数式中的 currying
currying 是函数式语言中经常遇到的一个概念,翻译成 柯里化,不是库里化. currying 指的是将接收多个参数的函数变换成接收一个单一参数,并且返回接收余下的参数而且返回结果的新函数的技术. ...
- 函数柯里化(Currying)示例
”函数柯里化”是指将多变量函数拆解为单变量的多个函数的依次调用, 可以从高元函数动态地生成批量的低元的函数.可以看成一个强大的函数工厂,结合函数式编程,可以叠加出很BT的能力.下面给出了两个示例,说明 ...
- 并发编程 12—— 任务取消与关闭 之 shutdownNow 的局限性
Java并发编程实践 目录 并发编程 01—— ThreadLocal 并发编程 02—— ConcurrentHashMap 并发编程 03—— 阻塞队列和生产者-消费者模式 并发编程 04—— 闭 ...
- 【EF 译文系列】重试执行策略的局限性(EF 版本至少为 6)
原文链接:Limitations with Retrying Execution Strategies (EF6 onwards) 当使用重试执行策略的时候,大体有以下两种局限性: 不支持以流的方式进 ...
- [实变函数]5.1 Riemann 积分的局限性, Lebesgue 积分简介
1 Riemann 积分的局限性 (1) Riemann 积分与极限的条件太严: $$\bex f_k\rightrightarrows f\ra \lim \int_a^b f_k ...
- JAVA与多线程开发(线程基础、继承Thread类来定义自己的线程、实现Runnable接口来解决单继承局限性、控制多线程程并发)
实现线程并发有两种方式:1)继承Thread类:2)实现Runnable接口. 线程基础 1)程序.进程.线程:并行.并发. 2)线程生命周期:创建状态(new一个线程对象).就绪状态(调用该对象的s ...
- JavaScript中的Partial Application和Currying
这篇文章是一篇学习笔记,记录我在JS学习中的一个知识点及我对它的理解,知识点和技巧本身并不是我原创的.(引用或参考到的文章来源在文末) 先不解释Partial Application(偏函数应用)和C ...
- android TabActivity的局限性 是否还有存在的必要性
TabActivity的局限性 是否还有存在的必要性 其实谷歌有此举动,我们也应该早就想到了,为什么会这么说呢?那就要从TabActivity的原理开始说起了. 做个假定先: 比如我们最外面的Act ...
随机推荐
- Android NDK开发篇(六):Java与原生代码通信(异常处理)
一.捕获异常 异常处理是Java中的功能.在Android中使用SDK进行开发的时候常常要用到.Android原生代码在运行过程中假设遇到错误,须要检測,并抛出异常给Java层.运行原生代码出现了问题 ...
- LNMP(Linux+Nginx+MySQL+PHP)centos6.4安装
nginx命令 停止nginx服务:# /etc/init.d/nginx stop 启动nginx服务:# /etc/init.d/nginx start 编辑nginx配置文件:# vim /et ...
- C语言代码复习笔记:第二章
输出星星 #include <stdio.h> void printStart( int num ) { ) { printf("*"); }; } int main( ...
- Oracle聚合连接字符串
问题需求 现有一个数据表,如下: ID CODE NAME 1 A 张三 2 A 李四 3 B 王五 4 C 赵六 5 C 孙七 ...
- linux2.6.30.4内核移植(6)——移植应用程序hello world常见的错误:-bin/sh ./hello not found
通常在开发板上搭建好开发平台后,我们会试着移植一个最简单的应用程序Hello world来测试一下.初次尝试,我们经常会碰到的问题就是,在开发板上运行./hello的时候出错:-bin/sh ./he ...
- SQLServer中char、varchar、nchar、nvarchar的区别
http://www.cnblogs.com/14lcj/archive/2012/07/08/2581234.html SQLServer中char.varchar.nchar.nvarchar的区 ...
- Mybatis中的延迟加载的使用方法
Mybatis中的延迟加载的使用方法 在Mybatis中查询订单,然后带出商品信息和快递信息的配置方法 orderMapper.xml配置如下 <?xml version="1.0&q ...
- Qt 立体水晶按键实现
一直对 Qt 怎样实现富有立体感的按键很好奇,做过很多尝试,最后用的图片,但是图片终究不够灵活,而且占内存. 今天偶然发现,使用下面的代码,作出的 QPushButton 效果还算不错.代码共享之: ...
- LeetCode118:Pascal's Triangle
Given numRows, generate the first numRows of Pascal's triangle. For example, given numRows = 5, Retu ...
- loadrunner 脚本开发-参数化之将内容保存为参数、参数数组及参数值获取
转自:http://blog.sina.com.cn/s/blog_13cc013b50102v49c.html(查看原文) 在VuGen中默认使用{}的字符串称为参数 注意:参数必须在双引号中才能用 ...