redis详解(四)-- 高可用分布式集群
一,高可用
高可用(High Availability),是当一台服务器停止服务后,对于业务及用户毫无影响。 停止服务的原因可能由于网卡、路由器、机房、CPU负载过高、内存溢出、自然灾害等不可预期的原因导致,在很多时候也称单点问题。
(1)解决单点问题主要有2种方式:
主备方式
这种通常是一台主机、一台或多台备机,在正常情况下主机对外提供服务,并把数据同步到备机,当主机宕机后,备机立刻开始服务。
Redis HA中使用比较多的是keepalived,它使主机备机对外提供同一个虚拟IP,客户端通过虚拟IP进行数据操作,正常期间主机一直对外提供服务,宕机后VIP自动漂移到备机上。
优点是对客户端毫无影响,仍然通过VIP操作。
缺点也很明显,在绝大多数时间内备机是一直没使用,被浪费着的。
主从方式
这种采取一主多从的办法,主从之间进行数据同步。 当Master宕机后,通过选举算法(Paxos、Raft)从slave中选举出新Master继续对外提供服务,主机恢复后以slave的身份重新加入。
主从另一个目的是进行读写分离,这是当单机读写压力过高的一种通用型解决方案。 其主机的角色只提供写操作或少量的读,把多余读请求通过负载均衡算法分流到单个或多个slave服务器上。
缺点是主机宕机后,Slave虽然被选举成新Master了,但对外提供的IP服务地址却发生变化了,意味着会影响到客户端。 解决这种情况需要一些额外的工作,在当主机地址发生变化后及时通知到客户端,客户端收到新地址后,使用新地址继续发送新请求。
(2)数据同步
无论是主备还是主从都牵扯到数据同步的问题,这也分2种情况:
同步方式:当主机收到客户端写操作后,以同步方式把数据同步到从机上,当从机也成功写入后,主机才返回给客户端成功,也称数据强一致性。 很显然这种方式性能会降低不少,当从机很多时,可以不用每台都同步,主机同步某一台从机后,从机再把数据分发同步到其他从机上,这样提高主机性能分担同步压力。 在Redis中是支持这杨配置的,一台master,一台slave,同时这台salve又作为其他slave的master。
异步方式:主机接收到写操作后,直接返回成功,然后在后台用异步方式把数据同步到从机上。 这种同步性能比较好,但无法保证数据的完整性,比如在异步同步过程中主机突然宕机了,也称这种方式为数据弱一致性。
Redis主从同步采用的是异步方式,因此会有少量丢数据的危险。还有种弱一致性的特例叫最终一致性,这块详细内容可参见CAP原理及一致性模型。
(3)方案选择
keepalived方案配置简单、人力成本小,在数据量少、压力小的情况下推荐使用。 如果数据量比较大,不希望过多浪费机器,还希望在宕机后,做一些自定义的措施,比如报警、记日志、数据迁移等操作,推荐使用主从方式,因为和主从搭配的一般还有个管理监控中心。
宕机通知这块,可以集成到客户端组件上,也可单独抽离出来。 Redis官方Sentinel支持故障自动转移、通知等,详情见低成本高可用方案设计(四)。
逻辑图:

二,分布式
分布式(distributed), 是当业务量、数据量增加时,可以通过任意增加减少服务器数量来解决问题。
集群时代
至少部署两台Redis服务器构成一个小的集群,主要有2个目的:
- 高可用性:在主机挂掉后,自动故障转移,使前端服务对用户无影响。
- 读写分离:将主机读压力分流到从机上。
可在客户端组件上实现负载均衡,根据不同服务器的运行情况,分担不同比例的读请求压力。
逻辑图:

三,分布式集群时代
当缓存数据量不断增加时,单机内存不够使用,需要把数据切分不同部分,分布到多台服务器上。
可在客户端对数据进行分片,数据分片算法详见C#一致性Hash详解、C#之虚拟桶分片。
逻辑图:

大规模分布式集群时代
当数据量持续增加时,应用可根据不同场景下的业务申请对应的分布式集群。 这块最关键的是缓存治理这块,其中最重要的部分是加入了代理服务。 应用通过代理访问真实的Redis服务器进行读写,这样做的好处是:
- 避免越来越多的客户端直接访问Redis服务器难以管理,而造成风险。
- 在代理这一层可以做对应的安全措施,比如限流、授权、分片。
- 避免客户端越来越多的逻辑代码,不但臃肿升级还比较麻烦。
- 代理这层无状态的,可任意扩展节点,对于客户端来说,访问代理跟访问单机Redis一样。
目前楼主公司使用的是客户端组件和代理两种方案并存,因为通过代理会影响一定的性能。 代理这块对应的方案实现有Twitter的Twemproxy和豌豆荚的codis。
逻辑图:

四,总结
分布式缓存再向后是云服务缓存,对使用端完全屏蔽细节,各应用自行申请大小、流量方案即可,如淘宝OCS云服务缓存。
分布式缓存对应需要的实现组件有:
- 一个缓存监控、迁移、管理中心。
- 一个自定义的客户端组件,上图中的SmartClient。
- 一个无状态的代理服务。
- N台服务器。
redis详解(四)-- 高可用分布式集群的更多相关文章
- Dubbo+zookeeper构建高可用分布式集群(二)-集群部署
在Dubbo+zookeeper构建高可用分布式集群(一)-单机部署中我们讲了如何单机部署.但没有将如何配置微服务.下面分别介绍单机与集群微服务如何配置注册中心. Zookeeper单机配置:方式一. ...
- redis高可用分布式集群
一,高可用 高可用(High Availability),是当一台服务器停止服务后,对于业务及用户毫无影响. 停止服务的原因可能由于网卡.路由器.机房.CPU负载过高.内存溢出.自然灾害等不可预期的原 ...
- Redis 高可用分布式集群
一,高可用 高可用(High Availability),是当一台服务器停止服务后,对于业务及用户毫无影响. 停止服务的原因可能由于网卡.路由器.机房.CPU负载过高.内存溢出.自然灾害等不可预期的原 ...
- 一张图讲解最少机器搭建FastDFS高可用分布式集群安装说明
很幸运参与零售云快消平台的公有云搭建及孵化项目.零售云快消平台源于零售云家电3C平台私有项目,是与公司业务强耦合的.为了适用于全场景全品类平台,集团要求项目平台化,我们抢先并承担了此任务.并由我来主 ...
- ElasticSearch 高可用分布式集群搭建,与PHP多线程测试
方案: 使用HAproxy:当其中一台ElasticSearch Master宕掉时,ElasticSearch集群会自动将运行正常的节点提升为Master,但HAproxy不会将失败的请求重新分发到 ...
- Java集群优化——dubbo+zookeeper构建高可用分布式集群
不久前,我们讨论过Nginx+tomcat组成的集群,这已经是非常灵活的集群技术,但是当我们的系统遇到更大的瓶颈,全部应用的单点服务器已经不能满足我们的需求,这时,我们要考虑另外一种,我们熟悉的内容, ...
- Dubbo+zookeeper构建高可用分布式集群(一)-单机部署
不久前,我们讨论过Nginx+tomcat组成的集群,这已经是非常灵活的集群技术,但是当我们的系统遇到更大的瓶颈,全部应用的单点服务器已经不能满足我们的需求,这时,我们要考虑另外一种,我们熟悉的内容, ...
- hadoop3.1.1 HA高可用分布式集群安装部署
1.环境介绍 涉及到软件下载地址:https://pan.baidu.com/s/1hpcXUSJe85EsU9ara48MsQ 服务器:CentOS 6.8 其中:2 台 namenode.3 台 ...
- Redis之高可用、集群、云平台搭建
原文:Redis之高可用.集群.云平台搭建 文章大纲 一.基础知识学习二.Redis常见的几种架构及优缺点总结三.Redis之Redis Sentinel(哨兵)实战四.Redis之Redis Clu ...
随机推荐
- Java-如何不使用-volatile-和锁实现共享变量的同步操作
from: http://thinkinjava.cn/2018/06/Java-%E5%A6%82%E4%BD%95%E4%B8%8D%E4%BD%BF%E7%94%A8-volatile-%E5% ...
- mime type 类型名字应该用多长的字段?
在使用 FastAdmin 时有 mimetype 字段使用了 50 长度,有小伙伴反应,不够. 在 Linux 服务器上时 xlsx 文件的 mimetype 是 application/vnd. ...
- RabbitMQ消息可靠性分析
消息中间件的可靠性是指对消息不丢失的保障程度:而消息中间件的可用性是指无故障运行的时间百分比,通常用几个 9 来衡量.不存在绝对的可靠性只能尽量趋向完美.并且通常可靠性也意味着影响性能和付出更大的成本 ...
- webpack 的插件 DllPlugin 和 DllReferencePlugin
在项目中,引入了比较多的第三方库,导致项目大,而每次修改,都不会去修改到这些库,构建却都要再打包这些库,浪费了不少时间.所以,把这些不常变动的第三方库都提取出来,下次 build 的时候不再构建这些库 ...
- MapReduce-皮尔逊(Pearson)线性相关
Pearson相关系数解决了两个群的数据是否线性相关的问题: 先补充一下基本概念: 协方差:如果两个变量的变化趋势一致,也就是说如果其中一个大于自身的期望值时另外一个也大于自身的期望值,那么两个变量之 ...
- vmware 安装 ios 苹果系统
我用的系统是win10... 一.所需软件: 1.下载并安装VMware Workstation Pro 12 密码:7ybc和序列号 密码是:bwm0 2.下载unlocker 203(for OS ...
- golang 如何判断变量的类型
本文介绍两种用于判断变量类型的方式. 方法一 package main import ( "fmt" ) func main() { v1 := "123456" ...
- Django QueryDict
QueryDict默认是不可变的,同过将QueryDict对象的_mutable 属性的值设置成True就可以为其赋值.QueryDict对象的urlencode()方法将QueryDict转换为字符 ...
- win7 X64 使用VS2008 ->编译报错LINK : fatal error LNK1000: Internal error during Incr的解决
编译报错LINK : fatal error LNK1000: Internal error during Incr的解决 Win7 旗舰版 Microsoft Visual Studio 2008 ...
- 【EasyUI学习-2】Easyui Tree的异步加载
作者:ssslinppp 1. 摘要 2. tree的相关介绍 3. 异步加载tree数据,并实现tree的折叠展开 3.1 功能说明: 3.2 前台代码 3.3 后台代码 4. 其他 1 ...