Python 实现多元线性回归预测
一、二元输入特征线性回归
测试数据为:ex1data2.txt
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
Python代码如下:
#-*- coding: UTF- -*- import random
import numpy as np
import matplotlib.pyplot as plt #加载数据
def load_exdata(filename):
data = []
with open(filename, 'r') as f:
for line in f.readlines():
line = line.split(',')
current = [int(item) for item in line] //根据数据输入的不同确定是int 还是其他类型
#5.5277,9.1302
data.append(current)
return data data = load_exdata('ex1data2.txt');
data = np.array(data,np.int64)//根据数据输入的不同确定是int 还是其他类型 #特征缩放
def featureNormalize(X):
X_norm = X;
mu = np.zeros((,X.shape[]))
sigma = np.zeros((,X.shape[]))
for i in range(X.shape[]):
mu[,i] = np.mean(X[:,i]) # 均值
sigma[,i] = np.std(X[:,i]) # 标准差
# print(mu)
# print(sigma)
X_norm = (X - mu) / sigma
return X_norm,mu,sigma #计算损失
def computeCost(X, y, theta):
m = y.shape[]
# J = (np.sum((X.dot(theta) - y)**)) / (*m)
C = X.dot(theta) - y
J2 = (C.T.dot(C))/ (*m)
return J2 #梯度下降
def gradientDescent(X, y, theta, alpha, num_iters):
m = y.shape[]
#print(m)
# 存储历史误差
J_history = np.zeros((num_iters, ))
for iter in range(num_iters):
# 对J求导,得到 alpha/m * (WX - Y)*x(i), (,m)*(m,) X (m,)*(,) = (m,)
theta = theta - (alpha/m) * (X.T.dot(X.dot(theta) - y))
J_history[iter] = computeCost(X, y, theta)
return J_history,theta iterations = #迭代次数
alpha = 0.01 #学习率
x = data[:,(,)].reshape((-,))
y = data[:,].reshape((-,))
m = y.shape[]
x,mu,sigma = featureNormalize(x)
X = np.hstack([x,np.ones((x.shape[], ))])
# X = X[range(),:]
# y = y[range(),:] theta = np.zeros((, )) j = computeCost(X,y,theta)
J_history,theta = gradientDescent(X, y, theta, alpha, iterations) print('Theta found by gradient descent',theta) def predict(data):
testx = np.array(data)
testx = ((testx - mu) / sigma)
testx = np.hstack([testx,np.ones((testx.shape[], ))])
price = testx.dot(theta)
print('price is %d ' % (price)) predict([,])
二、多元线性回归,以三个特征输入为例
输入数据:testdata.txt。其中第一列是指输入的数据序列,不可读入
,230.1,37.8,69.2,22.1
,44.5,39.3,45.1,10.4
,17.2,45.9,69.3,9.3
,151.5,41.3,58.5,18.5
,180.8,10.8,58.4,12.9
,8.7,48.9,,7.2
,57.5,32.8,23.5,11.8
,120.2,19.6,11.6,13.2
,8.6,2.1,,4.8
,199.8,2.6,21.2,10.6
,66.1,5.8,24.2,8.6
,214.7,,,17.4
,23.8,35.1,65.9,9.2
,97.5,7.6,7.2,9.7
,204.1,32.9,,
,195.4,47.7,52.9,22.4
,67.8,36.6,,12.5
,281.4,39.6,55.8,24.4
,69.2,20.5,18.3,11.3
,147.3,23.9,19.1,14.6
,218.4,27.7,53.4,
,237.4,5.1,23.5,12.5
,13.2,15.9,49.6,5.6
,228.3,16.9,26.2,15.5
,62.3,12.6,18.3,9.7
,262.9,3.5,19.5,
,142.9,29.3,12.6,
,240.1,16.7,22.9,15.9
,248.8,27.1,22.9,18.9
,70.6,,40.8,10.5
,292.9,28.3,43.2,21.4
,112.9,17.4,38.6,11.9
,97.2,1.5,,9.6
,265.6,,0.3,17.4
,95.7,1.4,7.4,9.5
,290.7,4.1,8.5,12.8
,266.9,43.8,,25.4
,74.7,49.4,45.7,14.7
,43.1,26.7,35.1,10.1
,,37.7,,21.5
,202.5,22.3,31.6,16.6
,,33.4,38.7,17.1
,293.6,27.7,1.8,20.7
,206.9,8.4,26.4,12.9
,25.1,25.7,43.3,8.5
,175.1,22.5,31.5,14.9
,89.7,9.9,35.7,10.6
,239.9,41.5,18.5,23.2
,227.2,15.8,49.9,14.8
,66.9,11.7,36.8,9.7
,199.8,3.1,34.6,11.4
,100.4,9.6,3.6,10.7
,216.4,41.7,39.6,22.6
,182.6,46.2,58.7,21.2
,262.7,28.8,15.9,20.2
,198.9,49.4,,23.7
,7.3,28.1,41.4,5.5
,136.2,19.2,16.6,13.2
,210.8,49.6,37.7,23.8
,210.7,29.5,9.3,18.4
,53.5,,21.4,8.1
,261.3,42.7,54.7,24.2
,239.3,15.5,27.3,15.7
,102.7,29.6,8.4,
,131.1,42.8,28.9,
,,9.3,0.9,9.3
,31.5,24.6,2.2,9.5
,139.3,14.5,10.2,13.4
,237.4,27.5,,18.9
,216.8,43.9,27.2,22.3
,199.1,30.6,38.7,18.3
,109.8,14.3,31.7,12.4
,26.8,,19.3,8.8
,129.4,5.7,31.3,
,213.4,24.6,13.1,
,16.9,43.7,89.4,8.7
,27.5,1.6,20.7,6.9
,120.5,28.5,14.2,14.2
,5.4,29.9,9.4,5.3
,,7.7,23.1,
,76.4,26.7,22.3,11.8
,239.8,4.1,36.9,12.3
,75.3,20.3,32.5,11.3
,68.4,44.5,35.6,13.6
,213.5,,33.8,21.7
,193.2,18.4,65.7,15.2
,76.3,27.5,,
,110.7,40.6,63.2,
,88.3,25.5,73.4,12.9
,109.8,47.8,51.4,16.7
,134.3,4.9,9.3,11.2
,28.6,1.5,,7.3
,217.7,33.5,,19.4
,250.9,36.5,72.3,22.2
,107.4,,10.9,11.5
,163.3,31.6,52.9,16.9
,197.6,3.5,5.9,11.7
,184.9,,,15.5
,289.7,42.3,51.2,25.4
,135.2,41.7,45.9,17.2
,222.4,4.3,49.8,11.7
,296.4,36.3,100.9,23.8
,280.2,10.1,21.4,14.8
,187.9,17.2,17.9,14.7
,238.2,34.3,5.3,20.7
,137.9,46.4,,19.2
,,,29.7,7.2
,90.4,0.3,23.2,8.7
,13.1,0.4,25.6,5.3
,255.4,26.9,5.5,19.8
,225.8,8.2,56.5,13.4
,241.7,,23.2,21.8
,175.7,15.4,2.4,14.1
,209.6,20.6,10.7,15.9
,78.2,46.8,34.5,14.6
,75.1,,52.7,12.6
,139.2,14.3,25.6,12.2
,76.4,0.8,14.8,9.4
,125.7,36.9,79.2,15.9
,19.4,,22.3,6.6
,141.3,26.8,46.2,15.5
,18.8,21.7,50.4,
,,2.4,15.6,11.6
,123.1,34.6,12.4,15.2
,229.5,32.3,74.2,19.7
,87.2,11.8,25.9,10.6
,7.8,38.9,50.6,6.6
,80.2,,9.2,8.8
,220.3,,3.2,24.7
,59.6,,43.1,9.7
,0.7,39.6,8.7,1.6
,265.2,2.9,,12.7
,8.4,27.2,2.1,5.7
,219.8,33.5,45.1,19.6
,36.9,38.6,65.6,10.8
,48.3,,8.5,11.6
,25.6,,9.3,9.5
,273.7,28.9,59.7,20.8
,,25.9,20.5,9.6
,184.9,43.9,1.7,20.7
,73.4,,12.9,10.9
,193.7,35.4,75.6,19.2
,220.5,33.2,37.9,20.1
,104.6,5.7,34.4,10.4
,96.2,14.8,38.9,11.4
,140.3,1.9,,10.3
,240.1,7.3,8.7,13.2
,243.2,,44.3,25.4
,,40.3,11.9,10.9
,44.7,25.8,20.6,10.1
,280.7,13.9,,16.1
,,8.4,48.7,11.6
,197.6,23.3,14.2,16.6
,171.3,39.7,37.7,
,187.8,21.1,9.5,15.6
,4.1,11.6,5.7,3.2
,93.9,43.5,50.5,15.3
,149.8,1.3,24.3,10.1
,11.7,36.9,45.2,7.3
,131.7,18.4,34.6,12.9
,172.5,18.1,30.7,14.4
,85.7,35.8,49.3,13.3
,188.4,18.1,25.6,14.9
,163.5,36.8,7.4,
,117.2,14.7,5.4,11.9
,234.5,3.4,84.8,11.9
,17.9,37.6,21.6,
,206.8,5.2,19.4,12.2
,215.4,23.6,57.6,17.1
,284.3,10.6,6.4,
,,11.6,18.4,8.4
,164.5,20.9,47.4,14.5
,19.6,20.1,,7.6
,168.4,7.1,12.8,11.7
,222.4,3.4,13.1,11.5
,276.9,48.9,41.8,
,248.4,30.2,20.3,20.2
,170.2,7.8,35.2,11.7
,276.7,2.3,23.7,11.8
,165.6,,17.6,12.6
,156.6,2.6,8.3,10.5
,218.5,5.4,27.4,12.2
,56.2,5.7,29.7,8.7
,287.6,,71.8,26.2
,253.8,21.3,,17.6
,,45.1,19.6,22.6
,139.5,2.1,26.6,10.3
,191.1,28.7,18.2,17.3
,,13.9,3.7,15.9
,18.7,12.1,23.4,6.7
,39.5,41.1,5.8,10.8
,75.5,10.8,,9.9
,17.2,4.1,31.6,5.9
,166.8,,3.6,19.6
,149.7,35.6,,17.3
,38.2,3.7,13.8,7.6
,94.2,4.9,8.1,9.7
,,9.3,6.4,12.8
,283.6,,66.2,25.5
,232.1,8.6,8.7,13.4
python 代码:
#-*- coding: UTF- -*- import random
import numpy as np
import matplotlib.pyplot as plt #加载数据
def load_exdata(filename):
data = []
with open(filename, 'r') as f:
for line in f.readlines():
line = line.split(',')
current = [float(item) for item in line]
#5.5277,9.1302
data.append(current)
return data data = load_exdata('testdata.txt');
data = np.array(data,np.float64)//数据是浮点型 # 特征缩放
def featureNormalize(X):
X_norm = X;
mu = np.zeros((, X.shape[]))
sigma = np.zeros((, X.shape[]))
for i in range(X.shape[]):
mu[, i] = np.mean(X[:, i]) # 均值
sigma[, i] = np.std(X[:, i]) # 标准差
# print(mu)
# print(sigma)
X_norm = (X - mu) / sigma
return X_norm, mu, sigma # 计算损失
def computeCost(X, y, theta):
m = y.shape[]
# J = (np.sum((X.dot(theta) - y)**)) / (*m)
C = X.dot(theta) - y
J2 = (C.T.dot(C)) / ( * m)
return J2 # 梯度下降
def gradientDescent(X, y, theta, alpha, num_iters):
m = y.shape[]
# print(m)
# 存储历史误差
J_history = np.zeros((num_iters, ))
for iter in range(num_iters):
# 对J求导,得到 alpha/m * (WX - Y)*x(i), (,m)*(m,) X (m,)*(,) = (m,)
theta = theta - (alpha / m) * (X.T.dot(X.dot(theta) - y))
J_history[iter] = computeCost(X, y, theta)
return J_history, theta iterations = # 迭代次数
alpha = 0.01 # 学习率
x = data[:, ( ,,)].reshape((-, ))//数据特征输入,采用数据集一行的,第1,2,3个数据,然后将其变成一行,所以用shape
y = data[:, ].reshape((-, ))//输出特征,数据集的第四位
m = y.shape[]
x, mu, sigma = featureNormalize(x)
X = np.hstack([x, np.ones((x.shape[], ))])
# X = X[range(),:]
# y = y[range(),:] theta = np.zeros((, ))//因为x+y.总共有四个输入,所以theta是四维 j = computeCost(X, y, theta)
J_history, theta = gradientDescent(X, y, theta, alpha, iterations) print('Theta found by gradient descent', theta) def predict(data):
testx = np.array(data)
testx = ((testx - mu) / sigma)
testx = np.hstack([testx, np.ones((testx.shape[], ))])
price = testx.dot(theta)
print('predit value is %f ' % (price)) predict([151.5,41.3,58.5])//输入为3维
Python 实现多元线性回归预测的更多相关文章
- MATLAB实现多元线性回归预测
一.简单的多元线性回归: data.txt ,230.1,37.8,69.2,22.1 ,44.5,39.3,45.1,10.4 ,17.2,45.9,69.3,9.3 ,151.5,41.3,58. ...
- 机器学习01:使用scikit-learn的线性回归预测Google股票
这是机器学习系列的第一篇文章. 本文将使用Python及scikit-learn的线性回归预测Google的股票走势.请千万别期望这个示例能够让你成为股票高手.下面按逐步介绍如何进行实践. 准备数据 ...
- R语言 多元线性回归分析
#线性模型中有关函数#基本函数 a<-lm(模型公式,数据源) #anova(a)计算方差分析表#coef(a)提取模型系数#devinace(a)计算残差平方和#formula(a)提取模型公 ...
- R与数据分析旧笔记(六)多元线性分析 下
逐步回归 向前引入法:从一元回归开始,逐步加快变量,使指标值达到最优为止 向后剔除法:从全变量回归方程开始,逐步删去某个变量,使指标值达到最优为止 逐步筛选法:综合上述两种方法 多元线性回归的核心问题 ...
- Tensorflow 线性回归预测房价实例
在本节中将通过一个预测房屋价格的实例来讲解利用线性回归预测房屋价格,以及在tensorflow中如何实现 Tensorflow 线性回归预测房价实例 1.1. 准备工作 1.2. 归一化数据 1.3. ...
- C# chart.DataManipulator.FinancialFormula()公式的使用 线性回归预测方法
最近翻阅资料,找到 chart.DataManipulator.FinancialFormula()公式的使用,打开另一扇未曾了解的窗,供大家分享一下. 一 DataManipulator类 运行时, ...
- python实现感知机线性分类模型
前言 感知器是分类的线性分类模型,其中输入为实例的特征向量,输出为实例的类别,取+1或-1的值作为正类或负类.感知器对应于输入空间中对输入特征进行分类的超平面,属于判别模型. 通过梯度下降使误分类的损 ...
- 利用R进行多元线性回归分析
对于一个因变量y,n个自变量x1,...,xn,要如何判断y与这n个自变量之间是否存在线性关系呢? 肯定是要利用他们的数据集,假设数据集中有m个样本,那么,每个样本都分别对应着一个因变量和一个n维的自 ...
- R与数据分析旧笔记(六)多元线性分析 上
> x=iris[which(iris$Species=="setosa"),1:4] > plot(x) 首先是简单的肉眼观察数据之间相关性 多元回归相较于一元回归的 ...
随机推荐
- CentOS扩展库配置
背景:经常用到第三方的库,通过yum命令查询不到.例如:yum search ilbcWarning: No matches found for: ilbc 不要感叹,CentOS没你想象的支持力度那 ...
- C#操作Sqlite快速入门及相关工具收集
Sqlite不需要安装即可使用.Sqlite是不是那个System.Data.SQLite.DLL临时创建了数据库引擎? 1.新建一个WinForm项目,引用System.Data.SQLite.DL ...
- es6 对象解构 与 参数默认值
var abc = ({a = 123, b = 321, c = 456} = {}) => console.log(20181109155055, a) abc()
- wordxml文档格式说明
近期需要对word xml文档进行各种操作,需要熟悉 wordxml 文档格式,搜索了一番后发现 open xml sdk 官网的文档最好.就按照官网说明来记录一番 1 word xml 文档基本格式 ...
- unity, Gizmos.DrawMesh一个坑
错误写法(画不出来): void OnDrawGizmos(){ Mesh mesh=new Mesh(); mesh.vertices=... mesh.triangles=... //mesh.R ...
- shouldAutoRotate Method Not Called in iOS6
转自:http://stackoverflow.com/questions/13588325/shouldautorotate-method-not-called-in-ios6 参考1:http:/ ...
- VS调试dll
(ps:编译dll的工程最好配置一下预编译宏:“配置属性”/“C或C++”/“预处理器”/“预处理器定义”,选择编辑,在最下面加一行“_CRT_SECURE_NO_WARNINGS”) 1. 右键dl ...
- 【Socket】linux高性能网络服务程序
1.mystery引入 1)高性能的网络服务程序分为单线程重复式网络服务.多进程网络服务 .多线程网络服务.线程池网络服务和IO多路复用网络服务等 2)单线程重复式是最基本的一种TCP服务模式,其实现 ...
- Spark提交任务提示 com.mysql.jdbc.Driver Class not found
com.mysql.jdbc.Driver Not Found 提示很奇怪,在sbt文件中已经引用了,编译也没有问题: "mysql" % "mysql-connecto ...
- 邮箱登录form表单样例
index.html <!doctype html> <html lang="en"> <head> <meta charset=&quo ...