一、二元输入特征线性回归

测试数据为:ex1data2.txt

,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,

Python代码如下:

#-*- coding: UTF- -*-

import random
import numpy as np
import matplotlib.pyplot as plt #加载数据
def load_exdata(filename):
data = []
with open(filename, 'r') as f:
for line in f.readlines():
line = line.split(',')
current = [int(item) for item in line] //根据数据输入的不同确定是int 还是其他类型
#5.5277,9.1302
data.append(current)
return data data = load_exdata('ex1data2.txt');
data = np.array(data,np.int64)//根据数据输入的不同确定是int 还是其他类型 #特征缩放
def featureNormalize(X):
X_norm = X;
mu = np.zeros((,X.shape[]))
sigma = np.zeros((,X.shape[]))
for i in range(X.shape[]):
mu[,i] = np.mean(X[:,i]) # 均值
sigma[,i] = np.std(X[:,i]) # 标准差
# print(mu)
# print(sigma)
X_norm = (X - mu) / sigma
return X_norm,mu,sigma #计算损失
def computeCost(X, y, theta):
m = y.shape[]
# J = (np.sum((X.dot(theta) - y)**)) / (*m)
C = X.dot(theta) - y
J2 = (C.T.dot(C))/ (*m)
return J2 #梯度下降
def gradientDescent(X, y, theta, alpha, num_iters):
m = y.shape[]
#print(m)
# 存储历史误差
J_history = np.zeros((num_iters, ))
for iter in range(num_iters):
# 对J求导,得到 alpha/m * (WX - Y)*x(i), (,m)*(m,) X (m,)*(,) = (m,)
theta = theta - (alpha/m) * (X.T.dot(X.dot(theta) - y))
J_history[iter] = computeCost(X, y, theta)
return J_history,theta iterations = #迭代次数
alpha = 0.01 #学习率
x = data[:,(,)].reshape((-,))
y = data[:,].reshape((-,))
m = y.shape[]
x,mu,sigma = featureNormalize(x)
X = np.hstack([x,np.ones((x.shape[], ))])
# X = X[range(),:]
# y = y[range(),:] theta = np.zeros((, )) j = computeCost(X,y,theta)
J_history,theta = gradientDescent(X, y, theta, alpha, iterations) print('Theta found by gradient descent',theta) def predict(data):
testx = np.array(data)
testx = ((testx - mu) / sigma)
testx = np.hstack([testx,np.ones((testx.shape[], ))])
price = testx.dot(theta)
print('price is %d ' % (price)) predict([,])

二、多元线性回归,以三个特征输入为例

输入数据:testdata.txt。其中第一列是指输入的数据序列,不可读入

,230.1,37.8,69.2,22.1
,44.5,39.3,45.1,10.4
,17.2,45.9,69.3,9.3
,151.5,41.3,58.5,18.5
,180.8,10.8,58.4,12.9
,8.7,48.9,,7.2
,57.5,32.8,23.5,11.8
,120.2,19.6,11.6,13.2
,8.6,2.1,,4.8
,199.8,2.6,21.2,10.6
,66.1,5.8,24.2,8.6
,214.7,,,17.4
,23.8,35.1,65.9,9.2
,97.5,7.6,7.2,9.7
,204.1,32.9,,
,195.4,47.7,52.9,22.4
,67.8,36.6,,12.5
,281.4,39.6,55.8,24.4
,69.2,20.5,18.3,11.3
,147.3,23.9,19.1,14.6
,218.4,27.7,53.4,
,237.4,5.1,23.5,12.5
,13.2,15.9,49.6,5.6
,228.3,16.9,26.2,15.5
,62.3,12.6,18.3,9.7
,262.9,3.5,19.5,
,142.9,29.3,12.6,
,240.1,16.7,22.9,15.9
,248.8,27.1,22.9,18.9
,70.6,,40.8,10.5
,292.9,28.3,43.2,21.4
,112.9,17.4,38.6,11.9
,97.2,1.5,,9.6
,265.6,,0.3,17.4
,95.7,1.4,7.4,9.5
,290.7,4.1,8.5,12.8
,266.9,43.8,,25.4
,74.7,49.4,45.7,14.7
,43.1,26.7,35.1,10.1
,,37.7,,21.5
,202.5,22.3,31.6,16.6
,,33.4,38.7,17.1
,293.6,27.7,1.8,20.7
,206.9,8.4,26.4,12.9
,25.1,25.7,43.3,8.5
,175.1,22.5,31.5,14.9
,89.7,9.9,35.7,10.6
,239.9,41.5,18.5,23.2
,227.2,15.8,49.9,14.8
,66.9,11.7,36.8,9.7
,199.8,3.1,34.6,11.4
,100.4,9.6,3.6,10.7
,216.4,41.7,39.6,22.6
,182.6,46.2,58.7,21.2
,262.7,28.8,15.9,20.2
,198.9,49.4,,23.7
,7.3,28.1,41.4,5.5
,136.2,19.2,16.6,13.2
,210.8,49.6,37.7,23.8
,210.7,29.5,9.3,18.4
,53.5,,21.4,8.1
,261.3,42.7,54.7,24.2
,239.3,15.5,27.3,15.7
,102.7,29.6,8.4,
,131.1,42.8,28.9,
,,9.3,0.9,9.3
,31.5,24.6,2.2,9.5
,139.3,14.5,10.2,13.4
,237.4,27.5,,18.9
,216.8,43.9,27.2,22.3
,199.1,30.6,38.7,18.3
,109.8,14.3,31.7,12.4
,26.8,,19.3,8.8
,129.4,5.7,31.3,
,213.4,24.6,13.1,
,16.9,43.7,89.4,8.7
,27.5,1.6,20.7,6.9
,120.5,28.5,14.2,14.2
,5.4,29.9,9.4,5.3
,,7.7,23.1,
,76.4,26.7,22.3,11.8
,239.8,4.1,36.9,12.3
,75.3,20.3,32.5,11.3
,68.4,44.5,35.6,13.6
,213.5,,33.8,21.7
,193.2,18.4,65.7,15.2
,76.3,27.5,,
,110.7,40.6,63.2,
,88.3,25.5,73.4,12.9
,109.8,47.8,51.4,16.7
,134.3,4.9,9.3,11.2
,28.6,1.5,,7.3
,217.7,33.5,,19.4
,250.9,36.5,72.3,22.2
,107.4,,10.9,11.5
,163.3,31.6,52.9,16.9
,197.6,3.5,5.9,11.7
,184.9,,,15.5
,289.7,42.3,51.2,25.4
,135.2,41.7,45.9,17.2
,222.4,4.3,49.8,11.7
,296.4,36.3,100.9,23.8
,280.2,10.1,21.4,14.8
,187.9,17.2,17.9,14.7
,238.2,34.3,5.3,20.7
,137.9,46.4,,19.2
,,,29.7,7.2
,90.4,0.3,23.2,8.7
,13.1,0.4,25.6,5.3
,255.4,26.9,5.5,19.8
,225.8,8.2,56.5,13.4
,241.7,,23.2,21.8
,175.7,15.4,2.4,14.1
,209.6,20.6,10.7,15.9
,78.2,46.8,34.5,14.6
,75.1,,52.7,12.6
,139.2,14.3,25.6,12.2
,76.4,0.8,14.8,9.4
,125.7,36.9,79.2,15.9
,19.4,,22.3,6.6
,141.3,26.8,46.2,15.5
,18.8,21.7,50.4,
,,2.4,15.6,11.6
,123.1,34.6,12.4,15.2
,229.5,32.3,74.2,19.7
,87.2,11.8,25.9,10.6
,7.8,38.9,50.6,6.6
,80.2,,9.2,8.8
,220.3,,3.2,24.7
,59.6,,43.1,9.7
,0.7,39.6,8.7,1.6
,265.2,2.9,,12.7
,8.4,27.2,2.1,5.7
,219.8,33.5,45.1,19.6
,36.9,38.6,65.6,10.8
,48.3,,8.5,11.6
,25.6,,9.3,9.5
,273.7,28.9,59.7,20.8
,,25.9,20.5,9.6
,184.9,43.9,1.7,20.7
,73.4,,12.9,10.9
,193.7,35.4,75.6,19.2
,220.5,33.2,37.9,20.1
,104.6,5.7,34.4,10.4
,96.2,14.8,38.9,11.4
,140.3,1.9,,10.3
,240.1,7.3,8.7,13.2
,243.2,,44.3,25.4
,,40.3,11.9,10.9
,44.7,25.8,20.6,10.1
,280.7,13.9,,16.1
,,8.4,48.7,11.6
,197.6,23.3,14.2,16.6
,171.3,39.7,37.7,
,187.8,21.1,9.5,15.6
,4.1,11.6,5.7,3.2
,93.9,43.5,50.5,15.3
,149.8,1.3,24.3,10.1
,11.7,36.9,45.2,7.3
,131.7,18.4,34.6,12.9
,172.5,18.1,30.7,14.4
,85.7,35.8,49.3,13.3
,188.4,18.1,25.6,14.9
,163.5,36.8,7.4,
,117.2,14.7,5.4,11.9
,234.5,3.4,84.8,11.9
,17.9,37.6,21.6,
,206.8,5.2,19.4,12.2
,215.4,23.6,57.6,17.1
,284.3,10.6,6.4,
,,11.6,18.4,8.4
,164.5,20.9,47.4,14.5
,19.6,20.1,,7.6
,168.4,7.1,12.8,11.7
,222.4,3.4,13.1,11.5
,276.9,48.9,41.8,
,248.4,30.2,20.3,20.2
,170.2,7.8,35.2,11.7
,276.7,2.3,23.7,11.8
,165.6,,17.6,12.6
,156.6,2.6,8.3,10.5
,218.5,5.4,27.4,12.2
,56.2,5.7,29.7,8.7
,287.6,,71.8,26.2
,253.8,21.3,,17.6
,,45.1,19.6,22.6
,139.5,2.1,26.6,10.3
,191.1,28.7,18.2,17.3
,,13.9,3.7,15.9
,18.7,12.1,23.4,6.7
,39.5,41.1,5.8,10.8
,75.5,10.8,,9.9
,17.2,4.1,31.6,5.9
,166.8,,3.6,19.6
,149.7,35.6,,17.3
,38.2,3.7,13.8,7.6
,94.2,4.9,8.1,9.7
,,9.3,6.4,12.8
,283.6,,66.2,25.5
,232.1,8.6,8.7,13.4

python 代码:

#-*- coding: UTF- -*-

import random
import numpy as np
import matplotlib.pyplot as plt #加载数据
def load_exdata(filename):
data = []
with open(filename, 'r') as f:
for line in f.readlines():
line = line.split(',')
current = [float(item) for item in line]
#5.5277,9.1302
data.append(current)
return data data = load_exdata('testdata.txt');
data = np.array(data,np.float64)//数据是浮点型 # 特征缩放
def featureNormalize(X):
X_norm = X;
mu = np.zeros((, X.shape[]))
sigma = np.zeros((, X.shape[]))
for i in range(X.shape[]):
mu[, i] = np.mean(X[:, i]) # 均值
sigma[, i] = np.std(X[:, i]) # 标准差
# print(mu)
# print(sigma)
X_norm = (X - mu) / sigma
return X_norm, mu, sigma # 计算损失
def computeCost(X, y, theta):
m = y.shape[]
# J = (np.sum((X.dot(theta) - y)**)) / (*m)
C = X.dot(theta) - y
J2 = (C.T.dot(C)) / ( * m)
return J2 # 梯度下降
def gradientDescent(X, y, theta, alpha, num_iters):
m = y.shape[]
# print(m)
# 存储历史误差
J_history = np.zeros((num_iters, ))
for iter in range(num_iters):
# 对J求导,得到 alpha/m * (WX - Y)*x(i), (,m)*(m,) X (m,)*(,) = (m,)
theta = theta - (alpha / m) * (X.T.dot(X.dot(theta) - y))
J_history[iter] = computeCost(X, y, theta)
return J_history, theta iterations = # 迭代次数
alpha = 0.01 # 学习率
x = data[:, ( ,,)].reshape((-, ))//数据特征输入,采用数据集一行的,第1,2,3个数据,然后将其变成一行,所以用shape
y = data[:, ].reshape((-, ))//输出特征,数据集的第四位
m = y.shape[]
x, mu, sigma = featureNormalize(x)
X = np.hstack([x, np.ones((x.shape[], ))])
# X = X[range(),:]
# y = y[range(),:] theta = np.zeros((, ))//因为x+y.总共有四个输入,所以theta是四维 j = computeCost(X, y, theta)
J_history, theta = gradientDescent(X, y, theta, alpha, iterations) print('Theta found by gradient descent', theta) def predict(data):
testx = np.array(data)
testx = ((testx - mu) / sigma)
testx = np.hstack([testx, np.ones((testx.shape[], ))])
price = testx.dot(theta)
print('predit value is %f ' % (price)) predict([151.5,41.3,58.5])//输入为3维

Python 实现多元线性回归预测的更多相关文章

  1. MATLAB实现多元线性回归预测

    一.简单的多元线性回归: data.txt ,230.1,37.8,69.2,22.1 ,44.5,39.3,45.1,10.4 ,17.2,45.9,69.3,9.3 ,151.5,41.3,58. ...

  2. 机器学习01:使用scikit-learn的线性回归预测Google股票

    这是机器学习系列的第一篇文章. 本文将使用Python及scikit-learn的线性回归预测Google的股票走势.请千万别期望这个示例能够让你成为股票高手.下面按逐步介绍如何进行实践. 准备数据 ...

  3. R语言 多元线性回归分析

    #线性模型中有关函数#基本函数 a<-lm(模型公式,数据源) #anova(a)计算方差分析表#coef(a)提取模型系数#devinace(a)计算残差平方和#formula(a)提取模型公 ...

  4. R与数据分析旧笔记(六)多元线性分析 下

    逐步回归 向前引入法:从一元回归开始,逐步加快变量,使指标值达到最优为止 向后剔除法:从全变量回归方程开始,逐步删去某个变量,使指标值达到最优为止 逐步筛选法:综合上述两种方法 多元线性回归的核心问题 ...

  5. Tensorflow 线性回归预测房价实例

    在本节中将通过一个预测房屋价格的实例来讲解利用线性回归预测房屋价格,以及在tensorflow中如何实现 Tensorflow 线性回归预测房价实例 1.1. 准备工作 1.2. 归一化数据 1.3. ...

  6. C# chart.DataManipulator.FinancialFormula()公式的使用 线性回归预测方法

    最近翻阅资料,找到 chart.DataManipulator.FinancialFormula()公式的使用,打开另一扇未曾了解的窗,供大家分享一下. 一 DataManipulator类 运行时, ...

  7. python实现感知机线性分类模型

    前言 感知器是分类的线性分类模型,其中输入为实例的特征向量,输出为实例的类别,取+1或-1的值作为正类或负类.感知器对应于输入空间中对输入特征进行分类的超平面,属于判别模型. 通过梯度下降使误分类的损 ...

  8. 利用R进行多元线性回归分析

    对于一个因变量y,n个自变量x1,...,xn,要如何判断y与这n个自变量之间是否存在线性关系呢? 肯定是要利用他们的数据集,假设数据集中有m个样本,那么,每个样本都分别对应着一个因变量和一个n维的自 ...

  9. R与数据分析旧笔记(六)多元线性分析 上

    > x=iris[which(iris$Species=="setosa"),1:4] > plot(x) 首先是简单的肉眼观察数据之间相关性 多元回归相较于一元回归的 ...

随机推荐

  1. Android ListView and Tips.

    Tips: ListView嵌套ListView,有footerView时.须要又一次measure高度时,footerview最顶层的view不能是RelativeLayout,最好用LinearL ...

  2. T4文本模板转换过程

    T4文本模板转换过程将文本模板文件作为输入,生成一个新的文本文件作为输出. 例如,可以使用文本模板生成 Visual Basic 或 C# 代码,还可以生成 HTML 报告. 有三个组件参与这一过程: ...

  3. ldconfig命令

    ldconfig是一个动态链接库管理命令 为了让动态链接库为系统所共享,还需运行动态链接库的管理命令--ldconfigldconfig 命令的用途,主要是在默认搜寻目录(/lib和/usr/lib) ...

  4. wget for windows

    那么,来尝试下wget for windows 吧. 什么是wget? wget是一个强力方便的命令行下的下载工具,可以通过HTTP和FTP协议(两种最广泛的互联网协议)从因特网中检索并获取文件. 此 ...

  5. SpringApplication初始化

    SpringApplication: private void initialize(Object[] sources) { if (sources != null && source ...

  6. WCF 有零个操作;协定必须至少有一个操作

    转自 http://www.cnblogs.com/bdqlaccp/archive/2011/12/31/2308905.html 建立WCF服务后, 服务类中写上了相应的操作,并且方法上加上了[O ...

  7. jQuery页面引导插件 jquery-pagewalkthrough

    http://jwarby.github.io/jquery-pagewalkthrough/ 源码 https://github.com/jwarby/jquery-pagewalkthrough

  8. C#.NET中遍历指定目录下的文件(及所有子目录及子目录里更深层目录里的文件)

    //遍历一个目录下所有的文件列表,代码实例 DirectoryInfo dir = new DirectoryInfo(folderName);var list = GetAll(dir); /// ...

  9. rdesktop 指定服务器的分频率

    rdesktop -uAdministrator -g 1265x728 10.100.0.225 &

  10. android studio - 右键没有“New C++ Class 选项” 或 “Cannot find declaration to go to”的问题

    今天在android studio的cpp文件夹上右键,发现竟然没有了New C++ Class“的选项,如下图所示: 上图是正常情况. 下图是非正常情况. 解决方案 检查”File“-"S ...