tf.nn.conv2d

这个函数的功能是:给定4维的input和filter,计算出一个2维的卷积结果。函数的定义为:

def conv2d(input, filter, strides, padding, use_cudnn_on_gpu=None,
data_format=None, name=None):

input:待卷积的数据。格式要求为一个张量,[batch, in_height, in_width, in_channels]. 
分别表示 批次数,图像高度,宽度,输入通道数。 
filter: 卷积核。格式要求为[filter_height, filter_width, in_channels, out_channels]. 
分别表示 卷积核的高度,宽度,输入通道数,输出通道数。 
strides :一个长为4的list. 表示每次卷积以后卷积窗口在input中滑动的距离 
padding :有SAME和VALID两种选项,表示是否要保留图像边上那一圈不完全卷积的部分。如果是SAME,则保留 
use_cudnn_on_gpu :是否使用cudnn加速。默认是True

tf.nn.max_pool

进行最大值池化操作,而avg_pool 则进行平均值池化操作.函数的定义为:

def max_pool(value, ksize, strides, padding, data_format="NHWC", name=None):

value: 一个4D张量,格式为[batch, height, width, channels],与conv2d中input格式一样 
ksize: 长为4的list,表示池化窗口的尺寸 
strides: 池化窗口的滑动值,与conv2d中的一样 
padding: 与conv2d中用法一样。

【TensorFlow】CNN的更多相关文章

  1. 【TensorFlow】tf.nn.max_pool实现池化操作

    max pooling是CNN当中的最大值池化操作,其实用法和卷积很类似 有些地方可以从卷积去参考[TensorFlow]tf.nn.conv2d是怎样实现卷积的? tf.nn.max_pool(va ...

  2. 【Tensorflow】tf.nn.depthwise_conv2d如何实现深度卷积?

    版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/mao_xiao_feng/article/ ...

  3. 【转】CNN+BLSTM+CTC的验证码识别从训练到部署

    [转]CNN+BLSTM+CTC的验证码识别从训练到部署 转载地址:https://www.jianshu.com/p/80ef04b16efc 项目地址:https://github.com/ker ...

  4. 【Tensorflow】tf.nn.atrous_conv2d如何实现空洞卷积?膨胀卷积

    介绍关于空洞卷积的理论可以查看以下链接,这里我们不详细讲理论: 1.Long J, Shelhamer E, Darrell T, et al. Fully convolutional network ...

  5. 【TensorFlow】tf.nn.softmax_cross_entropy_with_logits的用法

    在计算loss的时候,最常见的一句话就是 tf.nn.softmax_cross_entropy_with_logits ,那么它到底是怎么做的呢? 首先明确一点,loss是代价值,也就是我们要最小化 ...

  6. 【TensorFlow】自主实现包含全节点Cell的LSTM层 Cell

    0x00 前言 常用的LSTM,或是双向LSTM,输出的结果通常是以下两个:1) outputs,包括所有节点的hidden2) 末节点的state,包括末节点的hidden和cell大部分任务有这些 ...

  7. 【TensorFlow】:解决TensorFlow的ImportError: DLL load failed: 动态链接库(DLL)初始化例程失败

    [背景] 在scikit-learn基础上系统结合数学和编程的角度学习了机器学习后(我的github:https://github.com/wwcom614/machine-learning),意犹未 ...

  8. 【转载】 【TensorFlow】static_rnn 和dynamic_rnn的区别

    原文地址: https://blog.csdn.net/qq_20135597/article/details/88980975 ----------------------------------- ...

  9. 【TensorFlow】一文弄懂CNN中的padding参数

    在深度学习的图像识别领域中,我们经常使用卷积神经网络CNN来对图像进行特征提取,当我们使用TensorFlow搭建自己的CNN时,一般会使用TensorFlow中的卷积函数和池化函数来对图像进行卷积和 ...

随机推荐

  1. iOS中消息传递方式

    iOS中消息传递方式 在iOS中有很多种消息传递方式,这里先简单介绍一下各种消息传递方式. 1.通知:在iOS中由通知中心进行消息接收和消息广播,是一种一对多的消息传递方式. NSNotificati ...

  2. 老男孩linux实战培训初级班第二次课前考试题

    ################################################################ 本文内容摘录于老男孩linux实战运维培训中心课前考试题(答案部分) ...

  3. 【MyBatis】MyBatis之如何配置

    1,MyBatis简介 MyBatis 是支持普通 SQL查询,存储过程和高级映射的优秀持久层框架.MyBatis 消除了几乎所有的JDBC代码和参数的手工设置以及结果集的检索.MyBatis 使用简 ...

  4. MySQL Sleep进程

    MySQL中查询当前的连接数: mysql> show status like '%Threads_connected%'; +-------------------+-------+ | Va ...

  5. android studio Gradle Build速度加快方法

    设置离线编译就可以解决这个问题了.如下图所示:

  6. Ilist<object>转换成I<实体> 如何转换

    ml = objects.Cast<menu>().ToList(); //需要 using System.Linq;

  7. 【转】IT业给世界带来的危机

    IT业给世界带来的危机 昨天写了文章之后,回忆起这几年在湾区的经历,觉得自己是一个很不幸的人.然而就在今天,我的自怜奇妙的转换成了另一种感情,因为我看到了更不幸的人…… 正在女朋友 Cinny 的父母 ...

  8. process credentials(三)

    主要内容包括: 1.进程描述符中Realtime Mutex相关数据结构的初始化 2.子进程如何复制父进程的credentials 3.per-task delay accounting的处理 4.子 ...

  9. 步进电机驱动器 和H桥

    http://bbs.eeworld.com.cn/thread-489952-1-1.html

  10. java十大低级错误和常见注意点

    Java十大低级错误 1. 不能用“==”比较两个字符串内容相等. 2. 对list做foreach循环时,循环代码中不能修改list的结构. java foreach只能用于只读的情况.如果需要删除 ...