LSTM简介以及数学推导(FULL BPTT)
http://blog.csdn.net/a635661820/article/details/45390671
前段时间看了一些关于LSTM方面的论文,一直准备记录一下学习过程的,因为其他事儿,一直拖到了现在,记忆又快模糊了。现在赶紧补上,本文的组织安排是这样的:先介绍rnn的BPTT所存在的问题,然后介绍最初的LSTM结构,在介绍加了遗忘控制门的,然后是加了peephole connections结构的LSTM,都是按照真实提出的时间顺序来写的。本文相当于把各个论文核心部分简要汇集一下而做的笔记,已提供快速的了解。
一.rnn结构的BPTT学习算法存在的问题
先看一下比较典型的BPTT一个展开的结构,如下图,这里只考虑了部分图,因为其他部分不是这里要讨论的内容。
对于t时刻的误差信号计算如下:
这样权值的更新方式如下:
上面的公式在BPTT中是非常常见的了,那么如果这个误差信号一直往过去传呢,假设任意两个节点u, v他们的关系是下面这样的:
那么误差传递信号的关系可以写成如下的递归式:
n表示图中一层神经元的个数,这个递归式的大概含义不难理解,要求t-q时刻误差信号对t时刻误差信号的偏导,就先求出t-q+1时刻对t时刻的,然后把求出来的结果传到t-q时刻,递归停止条件是q = 1时,就是刚开始写的那部分计算公式了。将上面的递归式展开后可以得到:
论文里面说的是可以通过归纳来证明,我没仔细推敲这里了,把里面连乘展开看容易明白一点:
整个结果式对T求和的次数是n^(q-1), 即T有n^(q-1)项,那么下面看问题出在哪儿。
如果|T| > 1, 误差就会随着q的增大而呈指数增长,那么网络的参数更新会引起非常大的震荡。
如果|T| < 1, 误差就会消失,导致学习无效,一般激活函数用simoid函数,它的倒数最大值是0.25, 权值最大值要小于4才能保证不会小于1。
误差呈指数增长的现象比较少,误差消失在BPTT中很常见。在原论文中还有更详细的数学分析,但是了解到此个人觉的已经足够理解问题所在了。
二.最初的LSTM结构
为了克服误差消失的问题,需要做一些限制,先假设仅仅只有一个神经元与自己连接,简图如下:
根据上面的,t时刻的误差信号计算如下:
为了使误差不产生变化,可以强制令下式为1:
根据这个式子,可以得到:
这表示激活函数是线性的,常常的令fj(x) = x, wjj = 1.0,这样就获得常数误差流了,也叫做CEC。
但是光是这样是不行的,因为存在输入输出处权值更新的冲突(这里原论文里面的解释我不是很明白),所以加上了两道控制门,分别是input gate, output gate,来解决这个矛盾,图如下:
图中增加了两个控制门,所谓控制的意思就是计算cec的输入之前,乘以input gate的输出,计算cec的输出时,将其结果乘以output gate的输出,整个方框叫做block, 中间的小圆圈是CEC, 里面是一条y = x的直线表示该神经元的激活函数是线性的,自连接的权重为1.0
三.增加forget gate
四.增加Peephole的LSTM结构
- input gate, forget gate的输入输出
- cell的输入
- output gate的输入输出
- cell的输出(这里也是block的输出)
五.一个LSTM的FULL BPTT推导(用误差信号)
- wij表示从神经元i到j的连接权重(注意这和很多论文的表示是反着的)
- 神经元的输入用a表示,输出用b表示
- 下标 ι, φ 和 ω分别表示input gate, forget gate,output gate
- c下标表示cell,从cell到 input, forget和output gate的peephole权重分别记做 wcι , wcφ and wcω
- Sc表示cell c的状态
- 控制门的激活函数用f表示,g,h分别表示cell的输入输出激活函数
- I表示输入层的神经元的个数,K是输出层的神经元个数,H是隐层cell的个数
LSTM简介以及数学推导(FULL BPTT)的更多相关文章
- RNN以及LSTM简介
转载地址 https://blog.csdn.net/zhaojc1995/article/details/80572098 本文部分参考和摘录了以下文章,在此由衷感谢以下作者的分享! https:/ ...
- 借One-Class-SVM回顾SMO在SVM中的数学推导--记录毕业论文5
上篇记录了一些决策树算法,这篇是借OC-SVM填回SMO在SVM中的数学推导这个坑. 参考文献: http://research.microsoft.com/pubs/69644/tr-98-14.p ...
- 关于不同进制数之间转换的数学推导【Written By KillerLegend】
关于不同进制数之间转换的数学推导 涉及范围:正整数范围内二进制(Binary),八进制(Octonary),十进制(Decimal),十六进制(hexadecimal)之间的转换 数的进制有多种,比如 ...
- UVA - 10014 - Simple calculations (经典的数学推导题!!)
UVA - 10014 Simple calculations Time Limit: 3000MS Memory Limit: Unknown 64bit IO Format: %lld & ...
- 『sumdiv 数学推导 分治』
sumdiv(POJ 1845) Description 给定两个自然数A和B,S为A^B的所有正整数约数和,编程输出S mod 9901的结果. Input Format 只有一行,两个用空格隔开的 ...
- LDA-线性判别分析(二)Two-classes 情形的数学推导
本来是要调研 Latent Dirichlet Allocation 的那个 LDA 的, 没想到查到很多关于 Linear Discriminant Analysis 这个 LDA 的资料.初步看了 ...
- leetcode 343. Integer Break(dp或数学推导)
Given a positive integer n, break it into the sum of at least two positive integers and maximize the ...
- [hdu5307] He is Flying [FFT+数学推导]
题面 传送门 思路 看到这道题,我的第一想法是前缀和瞎搞,说不定能$O\left(n\right)$? 事实证明我的确是瞎扯...... 题目中的提示 这道题的数据中告诉了我们: $sum\left( ...
- ZOJ3329(数学推导+期望递推)
要点: 1.期望的套路,要求n以上的期望,则设dp[i]为i分距离终点的期望步数,则终点dp值为0,答案是dp[0]. 2.此题主要在于数学推导,一方面是要写出dp[i] = 什么,虽然一大串但是思维 ...
随机推荐
- object-c中NSString与int和float的相互转换
1,字符串拼接 NSString *newString = [NSString stringWithFormat:@"%@%@",tempA,tempB]; 2,字符转int in ...
- Codeforces Round #394 (Div. 2) A. Dasha and Stairs 水题
A. Dasha and Stairs 题目连接: http://codeforces.com/contest/761/problem/A Description On her way to prog ...
- hdu 5734 Acperience 水题
Acperience 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5734 Description Deep neural networks (DN ...
- [Asp.net mvc]Html.ValidationSummary(bool)
摘要 对ValidationSummary是HtmlHelper的扩展方法,用来返回 System.Web.Mvc.ModelStateDictionary (即ModelState)对象中的验证消息 ...
- 基于设备树的TQ2440 DMA学习(3)—— DMA控制器驱动
作者 彭东林pengdonglin137@163.com 平台 TQ2440Linux-4.9 概述 上一篇直接操作DMA控制器实现了一个mem2mem的DMA传输,但是这样不符合linux driv ...
- Javascript 中的arguments
arguments是当前正在执行的function的一个参数,它保存了函数当前调用的参数. 使用方法:function.arguments[i]. 其中function.是可选项,是当前正在执行的 ...
- ArcGIS Engine Maplex Label(标注)使用一例(转)
/// <summary> /// MaplexEngine标注 /// </summary> /// <param name="pGeoFeatLyr&quo ...
- python测试开发django-18.admin后台中文版
前言 django的admin后台页面默认是英文的,不喜欢英文的话,可以改下setting.py里面的语言设置,改成中文版的显示 语言设置 打开setting.py,找到以下内容 # Internat ...
- Linux学习14-ab报错apr_pollset_poll: The timeout specified has expired (70007)
前言 使用ab压力测试时候出现报错apr_pollset_poll: The timeout specified has expired (70007),本篇总结了几个ab常见的报错和对应解决办法 当 ...
- LinkedList、Stack、Queue、PriorityQueue的总结
1.这几种容器的特点 都是按照顺序来存储元素. 取元素的时候的不同点: LinkedList:按照下标随意取元素 Stack:后进先出取元素 Queue:先进先出取元素 PriorityQueue:按 ...