之前的博客:http://www.cnblogs.com/bentuwuying/p/6681943.html中简单介绍了Learning to Rank的基本原理,也讲到了Learning to Rank的几类常用的方法:pointwise,pairwise,listwise。这篇博客就很多公司在实际中通常使用的pairwise的方法进行介绍,首先我们介绍相对简单的 RankSVM 和 IR SVM。

1. RankSVM

RankSVM的基本思想是,将排序问题转化为pairwise的分类问题,然后使用SVM分类模型进行学习并求解。

1.1 排序问题转化为分类问题

对于一个query-doc pair,我们可以将其用一个feature vector表示:x。而排序函数为f(x),我们根据f(x)的大小来决定哪个doc排在前面,哪个doc排在后面。即如果f(xi) > f(xj),则xi应该排在xj的前面,反之亦然。可以用下面的公式表示:

理论上,f(x)可以是任意函数,为了简单起见,我们假设其为线性函数:

如果这个排序函数f(x)是一个线性函数,那么我们便可以将一个排序问题转化为一个二元分类问题。理由如下:

首先,对于任意两个feature vector xi和 xj,在f(x)是线性函数的前提下,下面的关系都是存在的:

然后,便可以对xi和 xj的差值向量考虑二元分类问题。特别地,我们可以对其赋值一个label:

1.2 SVM模型解决排序问题

将排序问题转化为分类问题之后,我们便可以使用常用的分类模型来进行学习,这里我们选择了Linear SVM,同样的,可以通过核函数的方法扩展到 Nonlinear SVM。

如下面左图所示,是一个排序问题的例子,其中有两组query及其相应的召回documents,其中documents的相关程度等级分为三档。而weight vector w对应了排序函数,可以对query-doc pair进行打分和排序。

而下面右图则展示了如何将排序问题转化为分类问题。在同一个组内(同一个query下)的不同相关度等级的doc的feature vector可以进行组合,形成新的feature vector:x1-x2,x1-x3,x2-x3。同样的,label也会被重新赋值,例如x1-x2,x1-x3,x2-x3这几个feature vector的label被赋值成分类问题中的positive label。进一步,为了形成一个标准的分类问题,我们还需要有negative samples,这里我们就使用前述的几个新的positive feature vector的反方向向量作为相应的negative samples:x2-x1,x3-x1,x3-x2。另外,需要注意的是,我们在组合形成新的feature vector的时候,不能使用在原始排序问题中处于相同相似度等级的两个feature vector,也不能使用处于不同query下的两个feature vector。

        

1.2 SVM模型的求解过程

转化为了分类问题后,我们便可以使用SVM的通用方式进行求解。首先我们可以得到下面的优化问题:

通过将约束条件带入进原始优化问题的松弛变量中,可以进一步转化为非约束的优化问题:

加和的第一项代表了hinge loss,第二项代表了正则项。primal QP problem较难求解,如果使用通用的QP解决方式则费时费力,我们可以将其转化为dual problem,得到一个易于求解的形式:

而最终求解得到相应的参数后,排序函数可以表示为:

于是,RankSVM方法求解排序问题的步骤总结起来,如下图所示:

2. IR SVM

2.1 loss function的改造

上面介绍的RankSVM的基本思想是,将排序问题转化为pairwise的分类问题,然后使用SVM分类模型进行学习并求解。所以其在学习过程中,是使用了0-1分类损失函数(虽然实际上是用的替换损失函数hinge loss)。而这个损失函数的优化目标跟Information Retrieval的Evaluation常用指标(不仅要求各个doc之间的相对序关系正确,而且尤其重视Top的doc之间的序关系)还是存在gap的。所以有研究人员对此进行了研究,通过对RankSVM中的loss function进行改造从而使得优化目标更好地与Information Retrieval问题的常用评价指标相一致。

首先,我们通过一些例子来说明RankSVM在应用到文本排序的时候遇到的一些问题,如下图所示。

第一个问题就是,直接使用RankSVM的话,会将不同相似度等级的doc同等看待,不会加以区分。这在具体的问题中又会有两种形式:

1)Example 1中,3 vs 2 和 3 vs 1的两个pair,在0-1 loss function中是同等看待的,即它们其中任一对的次序的颠倒对loss function的增加大小是一样的。而这显然是不合理的,因为3 vs 1的次序颠倒显然要比 3 vs 2的次序的颠倒要更加严重,需要给予不同的权重来区分。

2)Example 2中,ranking-1是position 1 vs position 2的两个doc的位置颠倒了,ranking-2是position 3 vs position 4的两个doc的位置颠倒了,这两种情况在0-1 loss function中也是同等看待的。这显然也是不合理的,由于IR问题中对于Top doc尤其重视,ranking-1的问题要比ranking-2的问题更加严重,也是需要给予不同的权重加以区分。

第二个问题是,RankSVM对于不同query下的doc pair同等看待,不会加以区分。而不同query下的doc的数目是很不一样的。如Example 3所示,query-4的doc书目要更多,所以在训练过程中,query-4下的各个doc pair的训练数据对于模型的影响显然要比query-3下的各个doc pair的影响更大,所以最终结果的模型会有bias。

IR SVM针对以上两个问题进行了解决,它使用了cost sensitive classification,而不是0-1 classification,即对通常的hinge loss进行了改造。具体来说,它对来自不同等级的doc pair,或者来自不同query的doc pair,赋予了不同的loss weight:

1)对于Top doc,即相似度等级较高的doc所在的pair,赋予较大的loss weight。

2)对于doc数目较少的query,对其下面的doc pair赋予较大的loss weight。

2.2 IR SVM的求解过程

IR SVM的优化问题可以表示如下:

其中,代表了隶属于第k档grade pair的instance的loss weight值。这个值的确定有一个经验式的方法:对隶属于这一档grade pair的两个doc,随机交换它们的排序位置,看对于NDCG@1的减少值,将所有的减少值求平均就得到了这个loss weight。可以想象,这个loss weight值越大,说明这个pair的doc对于整体评价指标的影响较大,所以训练时候的重要程度也相应较大,这种情况一般对应着Top doc,这样做就是使得训练结果尤其重视Top doc的排序位置问题。反之亦然。

这个参数则对应了query的归一化系数。可以表示为,即该query下的doc数目的倒数,这个很好理解,如果这个query下的doc数目较少,则RankSVM训练过程中相对重视程度会较低,这时候通过增加这个权重参数,可以适当提高这个query下的doc pair的重要程度,使得模型训练中能够对不同的query下的doc pair重视程度相当。

IR SVM的优化问题如下:

同样地,也需要将其转化为dual problem进行求解:

而最终求解得到相应的参数后,排序函数可以表示为:

于是,IR SVM方法求解排序问题的步骤总结起来,如下图所示:

版权声明:

本文由笨兔勿应所有,发布于http://www.cnblogs.com/bentuwuying。如果转载,请注明出处,在未经作者同意下将本文用于商业用途,将追究其法律责任。

Learning to Rank算法介绍:RankSVM 和 IR SVM的更多相关文章

  1. [笔记]Learning to Rank算法介绍:RankNet,LambdaRank,LambdaMart

    之前的博客:http://www.cnblogs.com/bentuwuying/p/6681943.html中简单介绍了Learning to Rank的基本原理,也讲到了Learning to R ...

  2. Learning to Rank算法介绍:RankNet,LambdaRank,LambdaMart

    之前的博客:http://www.cnblogs.com/bentuwuying/p/6681943.html中简单介绍了Learning to Rank的基本原理,也讲到了Learning to R ...

  3. Learning to Rank算法介绍:GBRank

    之前的博客:http://www.cnblogs.com/bentuwuying/p/6681943.html中简单介绍了Learning to Rank的基本原理,也讲到了Learning to R ...

  4. [笔记]RankSVM 和 IR SVM

    之前的博客:http://www.cnblogs.com/bentuwuying/p/6681943.html中简单介绍了Learning to Rank的基本原理,也讲到了Learning to R ...

  5. [Machine Learning] Learning to rank算法简介

    声明:以下内容根据潘的博客和crackcell's dustbin进行整理,尊重原著,向两位作者致谢! 1 现有的排序模型 排序(Ranking)一直是信息检索的核心研究问题,有大量的成熟的方法,主要 ...

  6. Learning to rank基本算法

    搜索排序相关的方法,包括 Learning to rank 基本方法 Learning to rank 指标介绍 LambdaMART 模型原理 FTRL 模型原理 Learning to rank ...

  7. Learning to Rank之RankNet算法简介

    排序一直是信息检索的核心问题之一, Learning to Rank(简称LTR)用机器学习的思想来解决排序问题(关于Learning to Rank的简介请见我的博文Learning to Rank ...

  8. Learning To Rank之LambdaMART前世今生

    1.       前言 我们知道排序在非常多应用场景中属于一个非常核心的模块.最直接的应用就是搜索引擎.当用户提交一个query.搜索引擎会召回非常多文档,然后依据文档与query以及用户的相关程度对 ...

  9. Learning to Rank简介

    Learning to Rank是采用机器学习算法,通过训练模型来解决排序问题,在Information Retrieval,Natural Language Processing,Data Mini ...

随机推荐

  1. TFS Build做Web应用持续集成发布的一个技巧

    由于面向接口编程的关系,许多实现往往是动态注入运行,在一个项目中直接引用实现dll编译是不合理的.通常我们会在Post Build Event中添加一些xcopy命令将运行时才需要的dll复制到输出目 ...

  2. [工具] CintaNotes

    CintaNotes是一款非常轻巧实用的笔记软件,可看作EverNote轻量级替代品.CintaNotes只需1个exe,体积仅1MB,却拥有 EverNote易于收集.实时搜索.条状排列.tag分类 ...

  3. iOS开发-数据存储NSCoder

    软件中永远绕不开的一个问题就是数据存储的问题,PC的时候一般都是选择在数据库中存储,iOS如果是和后端配合的话,那么不需要考虑数据存储的这个问题,上次写了一下plist的存储,不过数据都是存储一些简单 ...

  4. 源代码的管理与在eclipse中使用maven进行代码测试

    管理源代码的工具 开发历史记录 SVN :集中式的源代码管理工具 通常必须连到公司的服务器上才能正常工作 (提交代码,查看代码的历史记录 查看代码的分支) 在公司中开发项目时 每天必须至少提交(Com ...

  5. Java实现验证码的产生和验证

    大家都知道为了防止我们的网站被有些人和黑客恶意攻击,比如我们网站的注册页面,如果我们在用户注册的时候不加上一个验证码框的话,别人就可以写一个脚本对你的网站进行恶意的注册,比如每分钟对你的网站进行n次的 ...

  6. python中super的使用方法

    说白了,super的使用就是要子类要调用父类的方法,我们就用super,那你要有调用的规范,我们明白这个规范就可以了. 在python2和python3中,调用方法不同,注意就是了.Python3.x ...

  7. Oracle管理监控之oracle用户管理方法

    创建用户语法: create user 用户名 identified by 密码: em:create user wangwc identified by tiger; 修改用户密码语法: alter ...

  8. Git:上传GitHub项目操作步骤

    git教程:git详解.gitbook #首次上传步骤 首先在工程文件位置处右键git bash here 本地创建ssh key $ ssh-keygen -t rsa -C "your_ ...

  9. 01 - nginx - 安装、配置文件、默认网站、虚拟主机

    一.运维: . 介绍服务器. 服务器逻辑: 服务器选择 操作系统 部署逻辑 业务环境部署逻辑 业务部署图 软件部署文档 日常维护文档 测试 开发上传代码到源码系统 上线 - 测服务器,内测 预发布测试 ...

  10. Python开发【数据结构】:字典内部剖析

    字典内部剖析 开篇先提出几个疑问: 所有的类型都可以做字典的键值吗? 字典的存储结构是如何实现的? 散列冲突时如何解决? 最近看了一些关于字典的文章,决定通过自己的理解把他们写下来:本章将详细阐述上面 ...