运行kafka ,需要依赖 zookeeper,你可以使用已有的 zookeeper 集群或者利用 kafka自带的zookeeper。

单机模式,用的是kafka自带的zookeeper,

分布式模式,用的是外部安装的zookeeper,即公共的zookeeper。

见博客

4 kafka集群部署及生产者java客户端编程 + kafka消费者java客户端编程

(这也是单节点安装)

kafka_2.10-0.8.1.1.tgz的1节点集群 

我这里是使用的是,kafka自带的zookeeper。
以及关于kafka的日志文件啊,都放在默认里即/tmp下,我没修改。保存默认的

1、 [hadoop@sparksinglenode kafka_2.10-0.8.1.1]$ jps
2625 Jps
2、 [hadoop@sparksinglenode kafka_2.10-0.8.1.1]$ bin/zookeeper-server-start.sh config/zookeeper.properties & 
此刻,这时,会一直停在这,因为是前端运行。
另开一窗口,
3、 [hadoop@sparksinglenode kafka_2.10-0.8.1.1]$ bin/kafka-server-start.sh config/server.properties &
也是前端运行。

推荐做法!!!
但是,我这里,自己在kafka安装目录下,为了自己的方便,写了个startkafka.sh和startzookeeper.sh
nohup bin/kafka-server-start.sh config/server.properties > kafka.log 2>&1 &
nohup bin/zookeeper-server-start.sh config/zookeeper.properties > zookeeper.log 2>&1 &
注意还要,root用户来,附上执行权限。chmod +x ./startkafka.sh chmod +x ./startzookeeper.sh 
这样,就会在kafka安装目录下,对应生出kafka.log和zookeeper.log。

1、[spark@sparksinglenode kafka_2.10-0.8.1.1]$ jps
5098 Jps
2、[spark@sparksinglenode kafka_2.10-0.8.1.1]$ bash startzookeeper.sh
[spark@sparksinglenode kafka_2.10-0.8.1.1]$ jps
5125 Jps
5109 QuorumPeerMain
3、[spark@sparksinglenode kafka_2.10-0.8.1.1]$ bash startkafka.sh
[spark@sparksinglenode kafka_2.10-0.8.1.1]$ jps
5155 Jps
5140 Kafka
5109 QuorumPeerMain
[spark@sparksinglenode kafka_2.10-0.8.1.1]$

  我了个去,启动是多么方便!

  

kafka_2.10-0.8.1.1.tgz的3节点集群

  关于下载,和安装,解压,这些,我不多赘述了。见我的单节点博客。

root@SparkMaster:/usr/local/kafka/kafka_2.10-0.8.1.1/config# cat server.properties 
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at

# http://www.apache.org/licenses/LICENSE-2.0

# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# see kafka.server.KafkaConfig for additional details and defaults

############################# Server Basics #############################

# The id of the broker. This must be set to a unique integer for each broker.
broker.id=0

############################# Socket Server Settings #############################

# The port the socket server listens on
port=9092

# Hostname the broker will bind to. If not set, the server will bind to all interfaces
#host.name=localhost

# Hostname the broker will advertise to producers and consumers. If not set, it uses the
# value for "host.name" if configured. Otherwise, it will use the value returned from
# java.net.InetAddress.getCanonicalHostName().
#advertised.host.name=<hostname routable by clients>

# The port to publish to ZooKeeper for clients to use. If this is not set,
# it will publish the same port that the broker binds to.
#advertised.port=<port accessible by clients>

# The number of threads handling network requests
num.network.threads=2

# The number of threads doing disk I/O
num.io.threads=8

# The send buffer (SO_SNDBUF) used by the socket server
socket.send.buffer.bytes=1048576

# The receive buffer (SO_RCVBUF) used by the socket server
socket.receive.buffer.bytes=1048576

# The maximum size of a request that the socket server will accept (protection against OOM)
socket.request.max.bytes=104857600

############################# Log Basics #############################

# A comma seperated list of directories under which to store log files
log.dirs=/kafka-logs

# The default number of log partitions per topic. More partitions allow greater
# parallelism for consumption, but this will also result in more files across
# the brokers.
num.partitions=2

############################# Log Flush Policy #############################

# Messages are immediately written to the filesystem but by default we only fsync() to sync
# the OS cache lazily. The following configurations control the flush of data to disk. 
# There are a few important trade-offs here:
# 1. Durability: Unflushed data may be lost if you are not using replication.
# 2. Latency: Very large flush intervals may lead to latency spikes when the flush does occur as there will be a lot of data to flush.
# 3. Throughput: The flush is generally the most expensive operation, and a small flush interval may lead to exceessive seeks. 
# The settings below allow one to configure the flush policy to flush data after a period of time or
# every N messages (or both). This can be done globally and overridden on a per-topic basis.

# The number of messages to accept before forcing a flush of data to disk
#log.flush.interval.messages=10000

# The maximum amount of time a message can sit in a log before we force a flush
#log.flush.interval.ms=1000

############################# Log Retention Policy #############################

# The following configurations control the disposal of log segments. The policy can
# be set to delete segments after a period of time, or after a given size has accumulated.
# A segment will be deleted whenever *either* of these criteria are met. Deletion always happens
# from the end of the log.

# The minimum age of a log file to be eligible for deletion
log.retention.hours=168

# A size-based retention policy for logs. Segments are pruned from the log as long as the remaining
# segments don't drop below log.retention.bytes.
#log.retention.bytes=1073741824

# The maximum size of a log segment file. When this size is reached a new log segment will be created.
log.segment.bytes=536870912

# The interval at which log segments are checked to see if they can be deleted according 
# to the retention policies
log.retention.check.interval.ms=60000

# By default the log cleaner is disabled and the log retention policy will default to just delete segments after their retention expires.
# If log.cleaner.enable=true is set the cleaner will be enabled and individual logs can then be marked for log compaction.
log.cleaner.enable=false

############################# Zookeeper #############################

# Zookeeper connection string (see zookeeper docs for details).
# This is a comma separated host:port pairs, each corresponding to a zk
# server. e.g. "127.0.0.1:3000,127.0.0.1:3001,127.0.0.1:3002".
# You can also append an optional chroot string to the urls to specify the
# root directory for all kafka znodes.
zookeeper.connect=SparkMaster:2181,SparkWorker1:2181,SparkWorker2:2181

# Timeout in ms for connecting to zookeeper
zookeeper.connection.timeout.ms=1000000
root@SparkMaster:/usr/local/kafka/kafka_2.10-0.8.1.1/config#

  SparkWorker1和SparkWorker2分别只把 broker.id=0改成 broker.id=1 ,broker.id=2。

即SparkMaster:

  broker.id=0

  log.dirs=/kafka-logs

  zookeeper.connect=SparkMaster:2181,SparkWorker1:2181,SparkWorker2:2181

即SparkWorker1:

  broker.id=1

  log.dirs=/kafka-logs

  zookeeper.connect=SparkMaster:2181,SparkWorker1:2181,SparkWorker2:2181

即SparkWorker2:

  broker.id=2

  log.dirs=/kafka-logs

  zookeeper.connect=SparkMaster:2181,SparkWorker1:2181,SparkWorker2:2181

 

   kafka的3节点如何启动

  步骤一:先,分别在SparkMaster、SpakrWorker1、SparkWorker2节点上,启动zookeeper进程。

root@SparkMaster:/usr/local/kafka/kafka_2.10-0.8.1.1# bash startkafka.sh

  其他,两台机器,一样的,不多赘述。

kafka_2.10-0.8.1.1.tgz的1或3节点集群的下载、安装和配置(图文详细教程)绝对干货的更多相关文章

  1. kafka_2.11-0.8.2.2.tgz的3节点集群的下载、安装和配置(图文详解)

    kafka_2.10-0.8.1.1.tgz的1或3节点集群的下载.安装和配置(图文详细教程)绝对干货 一.安装前准备 1.1 示例机器 二. JDK7 安装 1.1 下载地址 下载地址: http: ...

  2. redis3.0 集群实战1 -- 安装和配置

    本文主要是在centos7上安装和配置redis集群实战 参考: http://hot66hot.iteye.com/blog/2050676 集群教程: http://redisdoc.com/to ...

  3. Hyperledger Fabric 1.0 从零开始(九)——Fabric多节点集群生产启动

    7:Fabric多节点集群生产启动 7.1.多节点服务器配置 在生产环境上,我们沿用4.1.配置说明中的服务器各节点配置方案. 我们申请了五台生产服务器,其中四台服务器运行peer节点,另外一台服务器 ...

  4. linux 搭建elk6.8.0集群并破解安装x-pack

    一.环境信息以及安装前准备 1.组件介绍 *Filebeat是一个日志文件托运工具,在你的服务器上安装客户端后,filebeat会监控日志目录或者指定的日志文件,追踪读取这些文件(追踪文件的变化,不停 ...

  5. elasticsearch7.5.0+kibana-7.5.0+cerebro-0.8.5集群生产环境安装配置及通过elasticsearch-migration工具做新老集群数据迁移

    一.服务器准备 目前有两台128G内存服务器,故准备每台启动两个es实例,再加一台虚机,共五个节点,保证down一台服务器两个节点数据不受影响. 二.系统初始化 参见我上一篇kafka系统初始化:ht ...

  6. hadoop-1.1.0 rpm + centos 6.3 64虚拟机 + JDK7 搭建分布式集群

    第一步 ,环境准备.  宿主机为CentOS6.3 64位,3个虚拟机为CentOS6.3 64位. (注意:有个技巧,可以先创建一台虚拟机,在其上安装好JDK.hadoop后再克隆两台,这样省时又省 ...

  7. Hadoop 新生报道(二) hadoop2.6.0 集群系统版本安装和启动配置

    本次基于Hadoop2.6版本进行分布式配置,Linux系统是基于CentOS6.5 64位的版本.在此设置一个主节点和两个从节点. 准备3台虚拟机,分别为: 主机名 IP地址 master 192. ...

  8. redis3.0 集群在windows上的配置(转)

    1. 安装Redis版本:win-3.0.501https://github.com/MSOpenTech/redis/releases页面有,我下载的是zip版本的:Redis-x64-3.0.50 ...

  9. mongodb 3.0下载安装、配置及mongodb最新特性、基本命令教程详细介绍

    mongoDB简介(本文由www.169it.com搜集整理) MongoDB是一个高性能,开源,无模式的文档型数据库,是目前在IT行业非常流行的一种非关系型数据库(NoSql).它在许多场景下可用于 ...

随机推荐

  1. [EF] 如何在 Entity Framework 中以手动方式设定 Code First 的 Migration 作业

    Entity Framework (简称 EF) 发展到现在, 版本已经进入 6.1.0, 距离我写的「在 VS2013 以 Code First 方式建立 EF 资料库」这篇文章已有半年的时间.如果 ...

  2. jsPatch.qq.com呵呵

    jsPach.qq.comhtml, body {overflow-x: initial !important;}html { font-size: 14px; } body { margin: 0p ...

  3. ResponderChain note

    http://ww3.sinaimg.cn/large/6b288462gw1evl4h40tfxj20sg0lc77k.jpg

  4. MySql生成日历表

    mysql使用存储过程,创建日历表: 准备日历表: CREATE TABLE `m_dim_day` ( `ID` ) NOT NULL AUTO_INCREMENT, `DAY_ID` ) DEFA ...

  5. Linux系统中的以太网连接

    1.在Linux中,以太网连接接口被命令为:eth0,eth1等,其中0,1表示网卡编号. 2.lspci来查看网卡硬件信息(USB则是lsusb) 3.ifconfig来查看接口信息 ifconfi ...

  6. Git 克隆操作

    我们有一个裸库Git服务器,Tom 也推了他的第一个版本.现在,Jerry 可以查看他的变化.克隆操作的远程存储库创建实例. Jerry 在他的home目录,并创建新的目录,执行克隆操作. [jerr ...

  7. 【LINUX】——FreeBSD中的一些常规配置

    一:在为终端的目录添加颜色: 在 ~/.cshrc 文件中添加以下两行: setenv CLICOLOR 1 setenv LSCOLORS Gxfxaxdxcxegedabagacad CLICOL ...

  8. SpringBoot使用端口运行

    通过java -jar app.jar --name="Spring" --server.port=9090方式来传递参数. 参数用--xxx=xxx的形式传递. 转自http:/ ...

  9. MFC函数—— CWnd::PreCreateWindow

     CWnd::PreCreateWindow virtual BOOL PreCreateWindow( CREATESTRUCT& cs ); 返回值: 如果要继续窗口的创建过程,则返回非零 ...

  10. redis、kafka、rabittMQ对比

    本文不对三者之间的性能进行对比,只是从三者的特性上区分他们,并指出三者的不用应用场景. 1.publish/subscribe 发布订阅模式如下图所示可以具有多个生产者和发布者,redis.kafka ...