一直在读《陶哲轩实分析》,陶的书非常的严谨,环环相扣,但是也有个缺点就是计算性的例子和应用方面的例子太少了。所以就又找了本柯朗的《微积分与数学分析》搭配着看。柯朗的书的习题与陶的风格完全不同,里面有大量的考察技巧性的习题,有些题相当有难度,第一卷又没有提供习题答案。我试着解了一小部分习题,放到这里,供有需要的同学参考。能力有限,有些题确实搞不定,有些题给的答案可能是错的。所以仅供参考。

柯朗微积分与数学分析习题选解(1.3 节 b)

这一小节只有一道习题。这道题还是有些难度的,我是看了提示后才做出来的。

(a) 试证明 x√ 不是有理函数。

(b) 试证明 x√n 不是有理函数。

反证法:

如果 x√ 可以表示成有理函数的形式,也就是:

x√=a0+a1x+⋯+apxpb0+b1x+⋯+bqxq

对任意的x≥0 都成立。

设 x=y2 则有:

y=a0+a1y2+⋯+apy2pb0+b1y2+⋯+bqy2q

这个式子则对任何的 y 都成立。也就是:

a0+a1y2+⋯+apy2p=y(b0+b1y2+⋯+bqy2q)⇒a0−b0y+a1y2−b1y3+a2y4+⋯=0

这个多项式对任意的 y 都成立。

而我们知道一个 n 次多项式有无穷个根只有一种情况,就是多项式的所有系数都是 0,也就是 {am}pm=0 和 {bm}qm=0 都是 0。而有理函数的分母多项式不能全是 0,这里推出矛盾,所以x√ 不是有理函数。

如果 x√n 可以表示成有理函数的形式,也就是:

x√n=a0+a1x+⋯+apxpb0+b1x+⋯+bqxq

对任意的x≥0 都成立。

设 x=yn 则有:

y=a0+a1yn+⋯+aqynpb0+b1yn+⋯+bqynq

这个式子则对任何的 y 都成立。也就是:

a0+a1yn+⋯+apynp=y(b0+b1yn+⋯+bqynq)⇒a0−b0y+a1yn−b1yn+1+a2y2n+⋯=0

这个多项式对任意的 y 都成立。

而我们知道一个 n 次多项式有无穷个根只有一种情况,就是多项式的所有系数都是 0,也就是 {am}pm=0 和 {bm}qm=0 都是 0。而有理函数的分母多项式不能全是 0,这里推出矛盾,所以x√ 不是有理函数。

柯朗微积分与数学分析习题选解(1.3 节 b)的更多相关文章

  1. 柯朗微积分与数学分析习题选解(1.2 节 d)

    一直在读<陶哲轩实分析>,陶的书非常的严谨,环环相扣,但是也有个缺点就是计算性的例子和应用方面的例子太少了.所以就又找了本柯朗的<微积分与数学分析>搭配着看.柯朗的书的习题与陶 ...

  2. 柯朗微积分与数学分析习题选解(1.3 节 c)

    一直在读<陶哲轩实分析>,陶的书非常的严谨,环环相扣,但是也有个缺点就是计算性的例子和应用方面的例子太少了.所以就又找了本柯朗的<微积分与数学分析>搭配着看.柯朗的书的习题与陶 ...

  3. 柯朗微积分与数学分析习题选解(1.1 节 e)

    一直在读<陶哲轩实分析>,陶的书非常的严谨,环环相扣,但是也有个缺点就是计算性的例子和应用方面的例子太少了.所以就又找了本柯朗的<微积分与数学分析>搭配着看.柯朗的书的习题与陶 ...

  4. 柯朗微积分与数学分析习题选解(1.1 节 a)

    一直在读<陶哲轩实分析>,陶的书非常的严谨,环环相扣,但是也有个缺点就是计算性的例子和应用方面的例子太少了.所以就又找了本柯朗的<微积分与数学分析>搭配着看.柯朗的书的习题与陶 ...

  5. CDA考试 ▏2017 CDA L1备考资源习题详解-统计基础部分

    CDA考试 ▏2017 CDA L1备考资源习题详解-统计基础部分 <CDA LEVEL 1描述性分析典型例题讲解> 主讲人:CDA命题组委会 傅老师 ▏2017 CDA L1备考资源习题 ...

  6. C程序设计语言(第二版)--- 习题选

    1. 解: 2. 解: 3. (分析的好有条理啊!) 4. 解:

  7. 【原创】《算法导论》链表一章带星习题试解——附C语言实现

    原题: 双向链表中,需要三个基本数据,一个携带具体数据,一个携带指向上一环节的prev指针,一个携带指向下一环节的next指针.请改写双向链表,仅用一个指针np实现双向链表的功能.定义np为next ...

  8. 线性结构之习题选讲-ReversingLinkedList

    目录 一.什么是抽象的链表 二.单链表的逆转 三.测试数据 3.1 边界测试 更新.更全的<数据结构与算法>的更新网站,更有python.go.人工智能教学等着你:https://www. ...

  9. - > 并查集详解(第二节)

    以下是并查集思路详解: 一:概念 并查集处理的是“集合"之间的关系.当给出两个元素的一个无序数对(a,b)时,需要快速“合并”a和b分别所在的集合,这期间需要反复“查找”某元素所在的集合.“ ...

随机推荐

  1. ASP.NET MVC 5搭建自己的视图基架 (CodeTemplate)

    我们知道,在MVC项目中添加视图时,在添加面板有模板可以选择,这里会有人疑问,这个模板位于哪里?我可以搭建自己的基架吗? 首先回答第二个问题,答案是当然可以 我这里使用的是Visual Studio ...

  2. show tables from information_schema/performance_schema/sys;

    root@localhost:3306.sock [performance_schema]>select version();+------------+| version()  |+----- ...

  3. Python基础第一篇-------python的介绍

    一.python的介绍 python的创始人为吉多·范罗苏姆(Guido van Rossum).1989年的圣诞节期间,吉多·范罗苏姆(中文名字:龟叔)为了在阿姆斯特丹打发时间,决心开发一个新的脚本 ...

  4. SCLAlertView-Swift

    SCLAlertView-Swift https://github.com/vikmeup/SCLAlertView-Swift   Animated Alert View written in Sw ...

  5. Gogs集成AD域LDAP

    操作步骤: 添加认证源 使用管理员账号登录Gogs,进入控制面板→认证源管理→添加新的源 设置如图所示 使用ldap认证源登录 配置成功后,登录时可选择认真源,界面如图所示

  6. 教你用 jVectorMap 制作属于自己的旅行足迹

    jVectorMap JVectorMap 是一个优秀的.兼容性强的 jQuery 地图插件. 它可以工作在包括 IE6 在内的各款浏览器中,矢量图输出,除官方提供各国地图数据外,用户可以使用数据转换 ...

  7. IOS和安卓WEB页面,input输入框被软键盘遮挡解决方法

    本来以为这问题就只有ios才有,身边也没有android机测试,网上一搜,貌似有这个问题的还不少.最后把各种解决方法试了一边,貌似没什么用. 最后是这样解决的: setInterval(functio ...

  8. 打包dll发布到nuget服务器

    几个月前上传过一次nuget包,结果好久不用,今天想更新下,完全忘记了怎么用了,又是一顿查,所以决定记录下来,当然这可能不是一个傻瓜式的教程,但聪明的你们应该能够看明白的,因为整体操作还是很简单的 好 ...

  9. 中国城市json

    [{ "label": "北京Beijing010", "name": "北京", "pinyin" ...

  10. Kafka设计解析(十七)Kafka 0.11客户端集群管理工具AdminClient

    转载自 huxihx,原文链接 Kafka 0.11客户端集群管理工具AdminClient 很多用户都有直接使用程序API操作Kafka集群的需求.在0.11版本之前,kafka的服务器端代码(即添 ...