一直在读《陶哲轩实分析》,陶的书非常的严谨,环环相扣,但是也有个缺点就是计算性的例子和应用方面的例子太少了。所以就又找了本柯朗的《微积分与数学分析》搭配着看。柯朗的书的习题与陶的风格完全不同,里面有大量的考察技巧性的习题,有些题相当有难度,第一卷又没有提供习题答案。我试着解了一小部分习题,放到这里,供有需要的同学参考。能力有限,有些题确实搞不定,有些题给的答案可能是错的。所以仅供参考。

柯朗微积分与数学分析习题选解(1.3 节 b)

这一小节只有一道习题。这道题还是有些难度的,我是看了提示后才做出来的。

(a) 试证明 x√ 不是有理函数。

(b) 试证明 x√n 不是有理函数。

反证法:

如果 x√ 可以表示成有理函数的形式,也就是:

x√=a0+a1x+⋯+apxpb0+b1x+⋯+bqxq

对任意的x≥0 都成立。

设 x=y2 则有:

y=a0+a1y2+⋯+apy2pb0+b1y2+⋯+bqy2q

这个式子则对任何的 y 都成立。也就是:

a0+a1y2+⋯+apy2p=y(b0+b1y2+⋯+bqy2q)⇒a0−b0y+a1y2−b1y3+a2y4+⋯=0

这个多项式对任意的 y 都成立。

而我们知道一个 n 次多项式有无穷个根只有一种情况,就是多项式的所有系数都是 0,也就是 {am}pm=0 和 {bm}qm=0 都是 0。而有理函数的分母多项式不能全是 0,这里推出矛盾,所以x√ 不是有理函数。

如果 x√n 可以表示成有理函数的形式,也就是:

x√n=a0+a1x+⋯+apxpb0+b1x+⋯+bqxq

对任意的x≥0 都成立。

设 x=yn 则有:

y=a0+a1yn+⋯+aqynpb0+b1yn+⋯+bqynq

这个式子则对任何的 y 都成立。也就是:

a0+a1yn+⋯+apynp=y(b0+b1yn+⋯+bqynq)⇒a0−b0y+a1yn−b1yn+1+a2y2n+⋯=0

这个多项式对任意的 y 都成立。

而我们知道一个 n 次多项式有无穷个根只有一种情况,就是多项式的所有系数都是 0,也就是 {am}pm=0 和 {bm}qm=0 都是 0。而有理函数的分母多项式不能全是 0,这里推出矛盾,所以x√ 不是有理函数。

柯朗微积分与数学分析习题选解(1.3 节 b)的更多相关文章

  1. 柯朗微积分与数学分析习题选解(1.2 节 d)

    一直在读<陶哲轩实分析>,陶的书非常的严谨,环环相扣,但是也有个缺点就是计算性的例子和应用方面的例子太少了.所以就又找了本柯朗的<微积分与数学分析>搭配着看.柯朗的书的习题与陶 ...

  2. 柯朗微积分与数学分析习题选解(1.3 节 c)

    一直在读<陶哲轩实分析>,陶的书非常的严谨,环环相扣,但是也有个缺点就是计算性的例子和应用方面的例子太少了.所以就又找了本柯朗的<微积分与数学分析>搭配着看.柯朗的书的习题与陶 ...

  3. 柯朗微积分与数学分析习题选解(1.1 节 e)

    一直在读<陶哲轩实分析>,陶的书非常的严谨,环环相扣,但是也有个缺点就是计算性的例子和应用方面的例子太少了.所以就又找了本柯朗的<微积分与数学分析>搭配着看.柯朗的书的习题与陶 ...

  4. 柯朗微积分与数学分析习题选解(1.1 节 a)

    一直在读<陶哲轩实分析>,陶的书非常的严谨,环环相扣,但是也有个缺点就是计算性的例子和应用方面的例子太少了.所以就又找了本柯朗的<微积分与数学分析>搭配着看.柯朗的书的习题与陶 ...

  5. CDA考试 ▏2017 CDA L1备考资源习题详解-统计基础部分

    CDA考试 ▏2017 CDA L1备考资源习题详解-统计基础部分 <CDA LEVEL 1描述性分析典型例题讲解> 主讲人:CDA命题组委会 傅老师 ▏2017 CDA L1备考资源习题 ...

  6. C程序设计语言(第二版)--- 习题选

    1. 解: 2. 解: 3. (分析的好有条理啊!) 4. 解:

  7. 【原创】《算法导论》链表一章带星习题试解——附C语言实现

    原题: 双向链表中,需要三个基本数据,一个携带具体数据,一个携带指向上一环节的prev指针,一个携带指向下一环节的next指针.请改写双向链表,仅用一个指针np实现双向链表的功能.定义np为next ...

  8. 线性结构之习题选讲-ReversingLinkedList

    目录 一.什么是抽象的链表 二.单链表的逆转 三.测试数据 3.1 边界测试 更新.更全的<数据结构与算法>的更新网站,更有python.go.人工智能教学等着你:https://www. ...

  9. - > 并查集详解(第二节)

    以下是并查集思路详解: 一:概念 并查集处理的是“集合"之间的关系.当给出两个元素的一个无序数对(a,b)时,需要快速“合并”a和b分别所在的集合,这期间需要反复“查找”某元素所在的集合.“ ...

随机推荐

  1. [SQL SERVER] 映射网络驱动器,让SQL服务器可见

    在服务器上运行: EXEC sp_configure 'show advanced options', 1; GO RECONFIGURE; GO EXEC sp_configure 'xp_cmds ...

  2. TreeView控件概述、属性与方法

    1.作用:用于显示Node结点的分层列表.2.添加到控件箱菜单命令:工程 | 部件,在部件对话框中选择:Microsoft Windows Common Controls 6.03.TreeView控 ...

  3. 设置UINavigationController标题的属性

    设置UINavigationController标题的属性 self.title = @"产品详情"; [self.navigationController.navigationB ...

  4. 固定UIScrollView滑动的方向

    固定UIScrollView滑动的方向 一般而言,我们通过这两个参数CGRectMake以及contentSize就可以自动的让UIScrollView只往一个方向滚动.但我遇到过非常奇葩的情况,那就 ...

  5. Git使用本地仓库之基本操作

    1.Git是什么? 一个分布式版本控制系统,和SVN类似,但远比SVN强大的一个版本控制系统 ①Git可以方便的在本地进行版本管理,如同你本地有一个版本管理服务器一样我们可以选择在合适的时间将本地版本 ...

  6. php 代码编写规范

    1 编写目的为了更好的提高技术部的工作效率,保证开发的有效性和合理性,并可最大程度的提高程序代码的可读性和可重复利用性,指定此规范.开发团队根据自己的实际情况,可以对本规范进行补充或裁减. 2 整体要 ...

  7. ZT 查找字符串中连续最长的数字串

    查找字符串中连续最长的数字串 有俩方法,1)比较好理解一些.2)晦涩 1) /* 功能:在字符串中找出连续最长的数字串,并把这个串的长度返回, 并把这个最长数字串付给其中一个函数参数outputstr ...

  8. if 里面嵌套一个if&else (我自己又细分了别的条件,加了elif)

    场景: 一个陌生人敲门..... gender = input("你是男的是女的?") if gender == "女": print("请进&quo ...

  9. 18年11月5日 NOIP模拟赛

    T1 题解 对于k=100的情况,贪心 对于100%的数据 可以发现,当前的决策只对后面的开采有影响,且剩余耐久度与之后的开采收益成正比,如果倒着考虑这个问题,得出i-n的星球1点耐久度所能获得的最大 ...

  10. 18年10月31日 NOIP模拟赛

    T1.exercise 题解 数据很小直接模拟 代码 #include<iostream> #include<cstdio> #include<cmath> #in ...