洛咕 P3338 [ZJOI2014]力
好久没写过博客了。。
大力推式子就行了:
\(E_i=\sum_{j<i}\frac{q_j}{(i-j)^2}+\sum_{j>i}\frac{q_j}{(j-i)^2}\)
那么要转化成卷积的形式对吧,设\(f(i)=q_i,g(i)=\frac{1}{i^2}\)
\(E_i=\sum_{j<i}f(j)g(i-j)+\sum_{j>i}f(j)g(j-i)\)
直接NTT就行了。
#include<bits/stdc++.h>
#define il inline
#define vd void
typedef long long ll;
il int gi(){
int x=0,f=1;
char ch=getchar();
while(!isdigit(ch)){
if(ch=='-')f=-1;
ch=getchar();
}
while(isdigit(ch))x=x*10+ch-'0',ch=getchar();
return x*f;
}
typedef std::complex<double> cp;
const double pi=acos(-1);
double q[100010];
int rev[1<<19];
cp A[1<<19],B[1<<19],omg[1<<19],inv[1<<19];
double ans[100010];
il vd fft(cp*A,int n,cp*omg){
for(int i=0;i<n;++i)if(rev[i]>i)std::swap(A[i],A[rev[i]]);
for(int o=1;o<n;o<<=1)
for(cp*p=A;p!=A+n;p+=o<<1)
for(int i=0;i<o;++i){
cp t=omg[n/(o<<1)*i]*p[i+o];
p[i+o]=p[i]-t,p[i]+=t;
}
}
int main(){
int n=gi();
for(int i=1;i<=n;++i)scanf("%lf",&q[i]);
int N=1,lg=0;while(N<(n+2)*2)N<<=1,++lg;
for(int i=0;i<N;++i)rev[i]=(rev[i>>1]>>1)|((i&1)<<lg-1);
for(int i=0;i<N;++i)omg[i]=cp(cos(2*pi*i/N),sin(2*pi*i/N)),inv[i]=conj(omg[i]);
for(int i=1;i<=n;++i)A[i]=1.0/i/i;
for(int i=1;i<=n;++i)B[i]=q[i];
fft(A,N,omg),fft(B,N,omg);
for(int i=0;i<N;++i)A[i]*=B[i];
fft(A,N,inv);
for(int i=0;i<N;++i)A[i]/=N;
for(int i=1;i<=n;++i)ans[i]=A[i].real();
memset(A,0,sizeof A);memset(B,0,sizeof B);
std::reverse(q+1,q+n+1);
for(int i=1;i<=n;++i)A[i]=1.0/i/i;
for(int i=1;i<=n;++i)B[i]=q[i];
fft(A,N,omg),fft(B,N,omg);
for(int i=0;i<N;++i)A[i]*=B[i];
fft(A,N,inv);
for(int i=0;i<N;++i)A[i]/=N;
for(int i=1;i<=n;++i)ans[n-i+1]-=A[i].real();
for(int i=1;i<=n;++i)printf("%.3lf\n",ans[i]);
return 0;
}
洛咕 P3338 [ZJOI2014]力的更多相关文章
- [洛谷P3338] [ZJOI2014]力
洛谷题目链接:P3338 [ZJOI2014]力 题目描述 给出n个数qi,给出Fj的定义如下: \[F_j = \sum_{i<j}\frac{q_i q_j}{(i-j)^2 }-\sum_ ...
- 洛谷 P3338 [ZJOI2014]力 解题报告
P3338 [ZJOI2014]力 题目描述 给出n个数qi,给出Fj的定义如下: \(F_j = \sum_{i<j}\frac{q_i q_j}{(i-j)^2 }-\sum_{i>j ...
- 洛谷P3338 [ZJOI2014]力(FFT)
传送门 题目要求$$E_i=\frac{F_i}{q_i}=\sum_{j=1}^{i-1}\frac{q_j}{(i-j)^2}-\sum_{j=i+1}^n\frac{q_j}{(j-i)^2}$ ...
- 洛谷 P3338 [ZJOI2014]力
题意简述 读入\(n\)个数\(q_i\) 设\(F_j = \sum\limits_{i<j}\frac{q_i\times q_j}{(i-j)^2 }-\sum\limits_{i> ...
- [bzoj3527] [洛谷P3338] [Zjoi2014]力
Description 给出n个数qi,给出Fj的定义如下: \[ F_j=\sum\limits_{i<j} \frac{q_iq_j}{(i-j)^2} - \sum\limits_{i&g ...
- [Luogu P3338] [ZJOI2014]力 (数论 FFT 卷积)
题面 传送门: 洛咕 BZOJ Solution 写到脑壳疼,我好菜啊 我们来颓柿子吧 \(F_j=\sum_{i<j}\frac{q_i*q_j}{(i-j)^2}-\sum_{i>j} ...
- P3338 [ZJOI2014]力(FFT)
题目 P3338 [ZJOI2014]力 做法 普通卷积形式为:\(c_k=\sum\limits_{i=1}^ka_ib_{k-i}\) 其实一般我们都是用\(i=0\)开始的,但这题比较特殊,忽略 ...
- P3338 [ZJOI2014]力 /// FFT 公式转化翻转
题目大意: https://www.luogu.org/problemnew/show/P3338 题解 #include <bits/stdc++.h> #define N 300005 ...
- luogu P3338 [ZJOI2014]力
传送门 首先化简原式\[F_j=\sum_{i<j}\frac{q_iq_j}{(i-j)^2}-\sum_{i>j}\frac{q_iq_j}{(i-j)^2},E_j=F_j/q_j\ ...
随机推荐
- [UI] 精美UI界面欣赏[11]
精美UI界面欣赏[11]
- wxpython 编程触发菜单或按钮事件
最近逐步熟悉wxpython,编写了几个小小功能的GUI程序,GUI中免不了会有在代码中触发控件事件的业务需求.在其他Gui界面的语言中有postevent.triggerevent 调用事件名称的函 ...
- PHP_CodeSniffer 使用攻略
安装 PHP_CodeSniffer 安装 phpcs phpcs 是 PHP 代码规范的检测工具. # 下载 $ curl -OL https://squizlabs.github.io/PHP_C ...
- ms17-010漏洞利用教程
ms17-010 漏洞利用并拿下服务器教程 攻击环境: 攻击机win2003 ip:192.168.150.129 Window2003 Python环境及工具 攻击机kali: ip:192.168 ...
- November 28th 2016 Week 49th Monday
You only live once, but if you do it right, once is enough. 年华不虚度,一生也足矣. One today can win two tomor ...
- 题解 P1894 【[USACO4.2]完美的牛栏The Perfect Stall】
题面 农夫约翰上个星期刚刚建好了他的新牛棚,他使用了最新的挤奶技术.不幸的是,由于工程问题,每个牛栏都不一样.第一个星期,农夫约翰随便地让奶牛们进入牛栏,但是问题很快地显露出来:每头奶牛都只愿意在她们 ...
- [转]JMX的Hello World
这篇写的很详尽了: http://www.blogjava.net/hengheng123456789/articles/65690.html
- 鲜为人知的 Python 语法
所有人(好吧,不是所有人)都知道 python 是一门用途广泛.易读.而且容易入门的编程语言. 但同时 python 语法也允许我们做一些很奇怪的事情. 使用 lambda 表达式重写多行函数 ...
- 在centos7上搭建博客之小白教程~
原理 http使用方法一编译安装,php模块打入方式实现. 软件版本 在本次实验中,我们需要用到的软件版本如下: apr-1.6.2 apr-util-1.6.0 httpd-2.4.28 maria ...
- 论文笔记 CVPR-2014 DeepReID Deep filter pairing neural network for person re-identification
1. 摘要 第一篇用深度学习做Reid的文章,提出的FPNN采用端到端的训练方式,解决行人再识别的不对齐,光照,姿态等问题. 建立了一个新的带benchmark的数据集CUHK03,表现性能良好. 2 ...